The Status of Engineering Geology: Constraints on Infrastructure Development in Bangladesh

Total Page:16

File Type:pdf, Size:1020Kb

The Status of Engineering Geology: Constraints on Infrastructure Development in Bangladesh City University of New York (CUNY) CUNY Academic Works Publications and Research York College 2018 The Status of Engineering Geology: Constraints on Infrastructure Development in Bangladesh Mir Fazlul Karim Geotesting Express Inc. Muhammad Qumrul Hassan University of Dhaka Nazrul I. Khandaker CUNY York College Masud Ahmed New York City Department of Environmental Protection Belal Ahmed Sayeed Dewberry Geotechnical Company How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/yc_pubs/223 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Dhaka University The Status of Engineering Geology: Constraints on Infrastructure Development in Bangladesh 1 2 3 4 5 Mir Fazlul Karim , Muhammad Qumrul Hassan , Nazrul Islam Khandaker , Masud Ahmed and Belal Ahmed Sayeed (1) Engineering Geologist, GeoTesting Express Inc., Geocomp Corporation, Acton, MA 01720, USA (2) Department of Geology, University of Dhaka, Ramna, Dhaka, 1000, Bangladesh (3) Geology Discipline, Earth and Physical Sciences, York College Of CUNY, 94-20, Guy R. Brewer Blvd, Jamaica, NY 11451, USA (4) New York City Department of Environmental Protection, Geotechnical Section, NYCDEP, 59-17, Junction Blvd, Queens, New York, NY 11373, USA (5) Dewberry Geotechnical Company. 132 W 31st St #301, New York, NY 10001, USA ABSTRACT In recent years, megacity Dhaka is known to have one of the fastest urban population growths in Bangladesh. The population in Dhaka and other megacities has increased from 7 to 50 million during the last four decades. The rapid rate of urban population growth, along with the extreme paucity of real-estate for new infrastructure development or upgrading existing facilities, is already exacerbating the situation for the city planners and exerting tremendous pressure to come-up with viable solutions. Although practice of engineering geology, geotechnical exploration, and testing exists in Bangladesh; the system has still yet to adopt controlled quality standards with unified and professionally acceptable methods. There is a dire need for accessing shallow borehole data via a central depository system in order to initiate, reassess and provide sound geoengineering recommendations for any contemplated capital construction projects. A well-coordinated system involving city agencies and private sectors can ease the situation for effecting communication regarding knowledge-sharing and keeping involved geotechnical personnel informed about already acquired data. Several development projects of the country received finance from various sources and were monitored by various agencies with prescribed methodology for execution and implementation. This diversity of funding, ownership and oversight of the projects has put the geotechnical exploration and testing system into challenging state in Bangladesh. Integration of pertinent geomorphic, regional geology, bedrock, water table and soil data will certainly aid understanding the constraints associated with any subsurface construction. Mega cities such as Dhaka and Chittagong will require intense modification in order to accommodate urban facilities, including installation of a multilevel transportation system with underground space utilization. On a positive note, the megacity of Dhaka has suitable natural ground conditions typified by sound geoengineering parameters. Standard geotechnical exploration coupled with assessment of geomorphic and geotechnical attributes will augment existing data to characterize geological materials and prepare detailed engineering/geotechnical reports to be used for design and capital construction projects. Geotechnical information from the recently completed City Water Tunnel # 3 (New York City) is considered. History of Engineering Geology in Bangladesh Geology of Bangladesh CONSTRAINTS ON INFRASTRUCTURE DEVELOPMENT IN BANGLADESH The history of advancement of engineering geology in Bangladesh dates back to early seventies after the Port City Chittagong Generalized geology of Chittagong City Chittagong is RIVER EROSION AND FLOOD: independence of the country. By the virtue of national capacity the Geological Survey of Bangladesh (GSB) led the largest port city of Bangladesh. The engineering 5 CASE STUDY OF FURIOUS PADMA RIVER EROSIN IN NARIA URBAN AREA the beginning of professional practice and contribution of engineering geology in Bangladesh. Among the pioneer geology of the city is essentially influenced by the flood plain of the Karnaphuli River, the tidal plain along the Bank line December 1984 Bank line December 2016 Erosion causes town to turn river. engineering geologists of this land the most mentionable are Mesbahuddin Ahmed, Anisur Rahman, AKM 7 coast of the Bay of Bengal, and the undulated-to-dissected Shahidul Hasan, Hasan Faruque, Khurshid Alam, Dr Khandokar Musharaff Hossain, Dr. Sajjad Hossain and Mir 3 2 hills. The hilly area is formed of folded, soft sedimentary Fazlul Karim. Though the concept and understanding of engineering geology existed during the early development rocks of Mio-Pliocene age and it is the southern extension 1 Karnaphully Floodplain 3 and Valley Plain years (before 1980) of Bangladesh, the quantification of qualitative geological information and data for 6 of Sitakunda Anticline. The bedrock formations are Naria township on moderate to intensely fractured and faulted at a number of Old Natural Levee engineering application was very limited as the practice of civil engineering relied on rule of thumb methods. It is 2.53 miles 2.53 miles places. In the beginning, the city started settling mainly in being noted that Mesbahuddin Ahmed was the first engineering geologist of Bangladesh. He coauthored the 8 4 the higher terrain except for a few patches of port facilities Bank line December 2017 seismic code for structural design engineering, through a national committee (popularly known as Committee of along the river mouth of Karnaphuli. Later, due to rapid 1 9 increase of the urban population, the city extended into the Experts on Earthquake Hazard Minimization of Geological Survey of Bangladesh), where the structural Failure of bank protection measures. engineering team was led by renowned civil engineer Dr. Jamilur Reza Choudhury of Bangladesh University of lower alluvial and coastal plains without considering the geological aspects and constraints of these terrains. The Engineering and Technology (BUET). The first quantitative engineering geological input by a group of young subsurface engineering geologic conditions are strongly Bank line December 1994 Old Natural Levee 2.53 miles 2.53 miles geologists of Dhaka University Geology Department during a 1980 engineering exhibition of Bangladesh Institute Karnaphully Floodplain suitable for construction of underground tunnels and Failure of stiff foundation on of Engineers in Dhaka, sponsored by Md. Nurul Amin, an engineer of Foundation Consultants Ltd. The group Figure 1: Geological Units infrastructures, provided detailed bedrock engineering Bank line December 2006 liquefiable sand and silt. was led by Mir Fazlul Karim and other members included Dr. Arif Mohiuddin Sikder and Dr. M. Aziz Hasan. The 1 and 2 – Folded hills of Tertiary sedimentary rock geology maps are prepared using standard seismic and 3 – Pleistocene Terraces Barind and Madhupur group made a poster session and participated in the exhibition to demonstrate geological factors responsible for geotechnical parameters . The city is exposed to landslide 4 – Old Alluvial Deposit (Chandina Alluvium) and slope instability, excavation of hills and valley fill, damaging different infrastructures in the cities. The most innovative presentation attempted to convince civil 5 – Alluvial Fan Deposit flash flood, soft soil, soil collapse, liquefaction, river and 6 – Paludal Deposit, Marshy clay & peat engineers and policy makers that damage to the roads of Dhaka city and surrounding regions were caused by coastal erosion, tidal surges and flood. The geological 2.53 miles year. every geology the bank shifting changes surface river Dynamic 7 – Young Alluvial Deposit (Inter-stream deposit) hazards are associated with various geo-dynamic geological factors. The postulated causes were simple and concerned the Madhupur Clay that forms the ground of 8 and 9 – Deltaic and Coastal Deposit. Including Beach, Figure 7: The mighty river Padma is a complex flow of various pattern, ranging between meandering and swiftly shifting braided at degradational and depositional geomorphological Dhaka city. The Madhupur Clay is composed of swelling clays and after every rainy season the roads get bumped Estuarine and Mangrove swamp deposits. Figure 6: Near Surface Engineering Geological Map of different seasons of the year which is totally dependent on discharge and runoff in the Padma River watershed including human up with swelling heaves and troughs causing fractures in the asphalt (or tarmacs in the airports) ultimately Chittagong City, Bangladesh (Karim, M F et al., 1990) processes in this area. interferences and control along the upstream. This year the river was severely furious in her flow and bank erosion and caused severely furious in her flow and bank erosion and caused demolishing of hundreds of infrastructures, many villages and number of urban centers degrading their physical condition. The engineers from the Roads and Highways adopted a significant change in Dhaka Megacity
Recommended publications
  • The Effect of Climate and Anthropogenic Change on the Spatial Variability of Turbidity Maxima in the Southwest Delta of Bangladesh
    The effect of climate and anthropogenic change on the spatial variability of turbidity maxima in the southwest delta of Bangladesh. by MORSHEDA BEGUM Erasmus Mundus Joint Master in Water and Coastal Management. WACOMA 9/28/2018 Research Supervisor Dr Alfredo Iquierdo González Research Co-Supervisor Dr. Hans Middelkoop Mentors: Mohammed Feroz Islam The author has been financially supported by Erasmus Mundus This Master Thesis was carried out in the Department of Applied Physics, Faculty of Marine and Environmental Sciences University of Cadiz, as part of the UNESCO/UNITWIN/WiCoP activities in Cádiz, Spain, and in Utrecht University. The work was part of the project “Living polders: dynamic polder management for sustainable livelihoods, applied to Bangladesh” financed by The Netherlands Organisation for Scientific Research (NOW) (W 07.69.201). The author was supported by an ERASMUS MUNDUS scholarship. STATEMENT I hear by declare that this work has been carried out by me and the thesis has been composed by me and has not been submitted for any other degree or professional qualification. This work is presented to obtain a masters’ degree in Water and Coastal Management (WACOMA). ----------------------------- MORSHEDA BEGUM D. Alfredo Izquierdo González, Profesor del Departamento de Fizică Aplicată de la Universidad de Cádiz y D. Hans Middelkoop, Profesor del Departamento de Departamento de Geografía Física de la Universidad de Utrecht, como sus directores HACEN CONSTAR: Que esta Memoria, titulada “(El efecto del cambio climático y antropogénico sobre la variabilidad espacial de los máximos de turbidez en el delta sudoeste de Bangladesh)”, presentada por D. Morsheda Begum, resume su trabajo de Tesis de Master y, considerando que reúne todos los requisitos legales, autorizan su presentación y defensa para optar al grado de Master Erasmus Mundus in Water and Coastal Management (WACOMA).
    [Show full text]
  • A Checklist of Fishes and Fisheries of the Padda (Padma) River Near Rajshahi City
    Available online at www.ijpab.com Farjana Habib et al Int. J. Pure App. Biosci. 4 (2): 53-57 (2016) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.2248 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 4 (2): 53-57 (2016) Research Article A checklist of Fishes and Fisheries of the Padda (Padma) River near Rajshahi City Farjana Habib 1*, Shahrima Tasnin 1 and N.I.M. Abdus Salam Bhuiyan 2 1Research Scholar, 2Professor Department of Zoology, University of Rajshahi, Bangladesh *Corresponding Author E-mail: [email protected] Received: 22.03.2016 | Revised: 30.03.2016 | Accepted: 5.04.2016 ABSTRACT The present study was carried out to explore the existing fish fauna of the Padda (Padma) River near Rajshahi City Corporation area for a period of seven months (February to August). This study includes a checklist of the species composition found to inhabit the waters of this region, which included 82 species of fishes under 11 orders and two classes. The list also includes two species of prawns. A total of twenty nine fish species of the study area are recorded as threatened according to IUCN red list. This finding will help to evaluate the present status of fishes in Padda River and their seasonal abundance. Key words : Exotic, Endangered, Rajshahi City, Padda (Padma) River INTRODUCTION Padda is one of the main rivers of Bangladesh. It Kilometers (1,400 mi) from the source, the is the main distributary of the Ganges, flowing Padma is joined by the Jamuna generally southeast for 120 kilometers (75 mi) to (Lower Brahmaputra) and the resulting its confluence with the Meghna River near combination flows with the name Padma further the Bay of Bengal 1.
    [Show full text]
  • Climate Change and Anthropogenic Interferences for the Morphological Changes of the Padma River in Bangladesh
    American Journal of Climate Change, 2021, 10, 167-184 https://www.scirp.org/journal/ajcc ISSN Online: 2167-9509 ISSN Print: 2167-9495 Climate Change and Anthropogenic Interferences for the Morphological Changes of the Padma River in Bangladesh Md. Azharul Islam1*, Md. Sirazum Munir1, Md. Abul Bashar2, Kizar Ahmed Sumon3, Mohammad Kamruzzaman4, Yahia Mahmud5 1Department of Environmental Science, Bangladesh Agricultural University, Mymensingh, Bangladesh 2Bangladesh Fisheries Research Institute, Chandpur, Bangladesh 3Department of Fisheries Management, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh 4Senior Scientific Officer, Farm Machinery and Postharvest Technology Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh 5Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh How to cite this paper: Islam, Md. A., Abstract Munir, Md. S., Bashar, Md. A., Sumon, K. A., Kamruzzaman, M., & Mahmud, Y. (2021). This research aims to identify the morphological changes of the Padma River Climate Change and Anthropogenic Inter- due to the effects of anthropogenic climate change. The morphological changes ferences for the Morphological Changes of were measured by aerial satellite images and their historical comparison, ter- the Padma River in Bangladesh. American restrial survey, sedimentation in the riverbed, water flow, water discharge, Journal of Climate Change, 10, 167-184. siltation, and erosion along the river, etc. The Padma River has been analyzed https://doi.org/10.4236/ajcc.2021.102008 over the period from 1971 to 2020 using multi-temporal Landsat images and Received: March 5, 2021 long-term water flow data. The climatic parameters data related to tempera- Accepted: May 11, 2021 ture and rainfall were collected from 21 metrological stations distributed Published: May 14, 2021 throughout Bangladesh over a 50-year period (1965-2015) to evaluate the magnitude of these changes statistically and spatially.
    [Show full text]
  • Flood Risk Management in Dhaka a Case for Eco-Engineering
    Public Disclosure Authorized Flood Risk Management in Dhaka A Case for Eco-Engineering Public Disclosure Authorized Approaches and Institutional Reform Public Disclosure Authorized People’s Republic of Bangladesh Public Disclosure Authorized • III contents Acknowledgements VII Acronyms and abbreviations IX Executive Summary X 1 · Introduction 2 Objective 6 Approach 8 Process 9 Organization of the report 9 2 · Understanding Flood Risk in Greater Dhaka 10 disclaimer Demographic changes 13 This volume is a product of the staff of the International Bank for River systems 13 Reconstruction and Development/ The World Bank. The findings, interpretations, and conclusions expressed in this paper do not necessarily Monsoonal rain and intense short-duration rainfall 17 reflect the views of the Executive Directors of The World Bank or the Major flood events and underlying factors 20 governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and Topography, soil, and land use 20 other information shown on any map in this work do not imply any judgment Decline of groundwater levels in Dhaka on the part of The World Bank concerning the legal status of any territory or the 27 endorsement or acceptance of such boundaries. Impact of climate vulnerability on flood hazards in Dhaka 28 copyright statement Flood vulnerability and poverty 29 The material in this publication is copyrighted. Copying and/or transmitting Summary 33 portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development/ The World Bank encourages dissemination of its work and will normally grant permission to 3 · Public Sector Responses to Flood Risk: A Historical Perspective 34 reproduce portions of the work promptly.
    [Show full text]
  • BANGLADESH Transboundary Rivers
    Transboundary Conservation of the mangrove ecosystem of Sundarbans BANGLADESH Laskar Muqsudur Rahman Forest Department, BANGLADESH E-mail: [email protected] Third Workshop on Water and Adaptation to Climate Change in transboundary basins Geneva. Switzerland 25-26 April 2012 Bangladesh - Location & Climate The country is bordered on the west, north, and east by a 4,095-km land frontier with India and, in the southeast, by a short land and water frontier of 193 km with Myanmar. Bangladesh has a tropical monsoon climate - • Maximum summer temperatures 38 - 41°C • Winter day temperature 16–20 °C & at night around 10 °C • Annual rainfall ranges between 1,600 mm and 4,780 mm • Natural calamities - floods, tropical cyclones & tidal surges —ravage the country, particularly the coastal zone, almost every year. Ecosystem in Bangladesh Forests River Wetlands The 4 broad types of ecosystems : Terrestrial forest ecosystems, Inland freshwater ecosystems (Rivers, wetlands) Man-made ecosystems (Homegardens), and Coastal and marine ecosystems (Mangroves) Mangroves Coastal Homegardens Sundarban Mangrove Ecosystem Bangladesh and India shares the largest single tract of estuarine mangrove forests in the world which is globally known as the Sundarbans. The dominant tree species of the Sundarban is Sundari (Heritiera fomes). In Bangla ‘Sundar’ means beautiful. Sundarban is listed as UNESCO World Heritage site in 1997 and Ramsar Wetland Site in 1992. The Sundarbans spans 10,000 sq.km., about 6,000 sq. km. of which is in Bangladesh Sundarban Mangrove Ecosystem With its array of trees and wildlife the forest is a showpiece of natural history. It is a center of economic activities such as extraction of timber, fishing and collection of NTFP (e.g.
    [Show full text]
  • (1) Hydrological and Morphological Data of Padma River the Ganges River Drains the Southern Slope of the Himalayas
    The Study on Bheramara Combined Cycle Power Station in Bangladesh Final Report 4.6.5 Water Source (1) Hydrological and morphological data of Padma River The Ganges River drains the southern slope of the Himalayas. After breaking through the Indian shield, the Ganges swings to the east along recent multiple faults between the Rajmahal Hills and the Dinajpur Shield. The river enters Bangladesh at Godagari and is called Padma. Before meeting with the Jamuna, the river travels about 2,600km, draining about 990,400km2 of which about 38,880km2 lies within Bangladesh. The average longitudinal slope of water surface of the Ganges(Padma) River is about 5/100,000. Size of bed materials decreases in the downstream. At the Harding Bridge, the average diameter is about 0.15mm. The river planform is in between meandering and braiding, and varies temporally and spatially. Sweeping of the meandering bends and formation of a braided belt is limited within the active corridor of the river. This corridor is bounded by cohesive materials or man-made constructions that are resistant to erosion. Materials within these boundaries of the active corridor consist of loosely packed sand and silt, and are highly susceptible to erosion. Hydrological and morphological data of Padma River has been corrected by BWDB at Harding Bridge and crossing line of RMG-13 shown in the Figure I-4-6-4. Harding Bridge Origin (x=0) RMG-13 Padma River 3.66km Figure I-4-6-4 Bheramara site and Padma River Figure I-4-6-5 shows the water level at Harding Bridge between 1976 and 2006.
    [Show full text]
  • Socio Economics and Livelihoods of Beel
    OPEN ACCESS Freely available online e Rese tur arc ul h c & a u D q e A v e f l o o Journal of l p a m n r e u n o t J ISSN: 2155-9546 Aquaculture Research & Development Research Article Socio Economics and Livelihoods of Beel Fishermen: Cases from North- Western Bangladesh Ahamed GS1, Alam MT1*, Hussain MA2, Sultana S3 1Department of Aquaculture, Sylhet Agricultural University, Bangladesh; 2Department of Fisheries, Rajshahi University, Bangladesh; 3Department of Zoology, Rajshahi University, Bangladesh ABSTRACT The socio-economic condition and livelihood was studied. Religious status of the study area was more or less equal- 52.66% Muslim and 47.34% Hindu. Educational condition was very poor- 65.96% of the total fishermen are either illiterate or can sign only, the major group (35.11%) of fisherman was young of 21-30 years of age, average household size of the two beels was 4.75, Most of the fishermen family were poor- 79.79% houses were kacha and only 3.72% were pucca houses, 80.85% fishermen use drinking water from other’s tube well, 64.89% fishermen do not use electricity, sanitation condition of the study area is very poor- 51.06% fishermen have no sanitation facility and only 12.77 have pucca sanitation facility, the ratio of on farm and off farm was 1:0.25 indicating greatly dependency of the fishermen’s livelihood on the beels. In terms of well-being ranking, 60.6% belongs to lower class category followed by middle class (34.6%) indicating poor condition of the studied fishermen.
    [Show full text]
  • List of ADB Green Bond Eligible Projects As of 31 March 2021
    List of ADB Green Bond Eligible Projects As of 31 March 2021 Committed Amount Loan Number Country Project Name (in US$ millions) 2619 Indonesia Java-Bali Electricity Distribution Performance Improvement 12.21 2632 People's Republic of China Integrated Renewable Biomass Energy Development Sector 26.73 2713 Papua New Guinea Town Electrification Investment Program - Tranche 1 37.90 2737 Turkmenistan North-South Railway 18.89 2738 People's Republic of China Qinghai Rural Water Resources Management 28.18 2741 Viet Nam Ha Noi Metro Rail System (Line 3: Nhon-Ha Noi Station Section) 293.00 2765 People's Republic of China Railway Energy Efficiency and Safety Enhancement Investment Program - Tranche 3 203.10 2778 India Gujarat Solar Power Transmission 34.55 2793 India Railway Sector Investment Program-Tranche 1 106.25 2862 Bangladesh Greater Dhaka Sustainable Urban Transport Project 100.00 2956 Viet Nam Ho Chi Minh City Urban Mass Rapid Transit Line 2 Investment Program-Tranche 2 500.00 3014 People's Republic of China Hubei-Yichang Sustainable Urban Transport Project 96.29 3052 India Rajasthan Renewable Energy Transmission Investment Program-Tranche 1 43.62 3062 India Jaipur Metro Rail Line 1- Phase B Project 136.68 3075 People's Republic of China Qinghai Delingha Concentrated Solar Power Thermal Project 150.00 3082 People's Republic of China Railway Energy Efficiency and Safety Enhancement Investment Program-Tranche 4 160.00 3089 Indonesia Sarulla Geothermal Power Development Project 250.00 3097 Bangladesh Railway Sector Investment Program-Tranche
    [Show full text]
  • 226-248 Dissolved Inorganic Carbon (DIC) and Its Δ13c in the Ganga
    Author version: Geochim. Cosmochim. Acta, vol.165; 2015; 226-248 Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: Evidence of DIC generation via organic carbon degradation and carbonate dissolution Saumik Samanta1*, Tarun K. Dalai1*, Jitendra K. Pattanaik1, Santosh K. Rai2, Aninda Mazumdar3 1Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India 2Wadia Institute of Himalayan Geology, Dehradun 248001, India 3National Institute of Oceanography, Donapaula 403004, India *Authors of correspondence ([email protected], [email protected], [email protected]) Abstract In this study, we present comprehensive data on dissolved Ca, dissolved inorganic carbon (DIC) and 13 its carbon isotope composition (δ CDIC) of (i) the Ganga (Hooghly) River estuary water sampled during six seasons of contrasting water discharge over two years (2012 and 2013), (ii) shallow groundwater from areas adjacent to the estuary and (iii) industrial effluent water and urban wastewater draining into the estuary. Mass balance calculations indicate that processes other than the conservative mixing of seawater and river water are needed to explain the measured DIC and 13 δ CDIC. Results of mixing calculations in conjunction with the estimated undersaturated levels of dissolved O2 suggest that biological respiration and organic carbon degradation dominate over biological production in the estuary. An important outcome of this study is that a significant amount of DIC and dissolved Ca is produced within the estuary at salinity ≥10, particularly during the monsoon period. Based on consideration of mass balance and a strong positive correlation observed between the "excess" DIC and "excess" Ca, we contend that the dominant source of DIC generated within the estuary is carbonate dissolution that is inferred to be operating in conjunction with degradation of organic carbon.
    [Show full text]
  • The Ganges Basin Management and Community Empowerment Mohhamed Anwar Hossen
    Anwar Hossen Bandung: Journal of the Global South (2015) 2:14 DOI 10.1186/s40728-014-0005-3 RESEARCH Open Access The Ganges Basin management and community empowerment Mohhamed Anwar Hossen Correspondence: [email protected] Abstract Department of Sociology, Dhaka University, Dhaka, Bangladesh This paper explores the ecological effects of the top-down Ganges Basin water management systems in Chapra, Bangladesh, based on my ethnographic fieldworka data collected in 2011-12. An example of this top-down system is the Farakka Barrage in India that causes major ecological system failures and challenges to community livelihoods. The reduction in Ganges Basin water flow in Bangladesh based on the pre and post Farakka comparison is helpful in understanding these failures and their effects on community livelihoods. My argument is that basin communities are capable of becoming empowered by Ganges Basin water management and failures in the management create major challenges to the livelihood of these communities. In this context, I analyze the current Ganges Basin management practices, focusing specifically on the Joint River Commission and the 1996 Ganges Treaty between India and Bangladesh, and their effects on the basin communities in Chapra. My fieldwork data point out that the current shortcomings in basin management can be overcome with an improved management system. Water governance based on a multilateral approach is a way to restore the basin’s ecological systems and promote community empowerment. Based on this empowerment argument, this paper is divided into the following major sections: importance of the basin ecosystems for protecting community livelihoods, limitations of current basin management practices and community survival challenges, and proposed water governance for community empowerment.
    [Show full text]
  • English Overview
    DIRECTIONS IN DEVELOPMENT Countries and Regions Overview Toward Great Dhaka A New Urban Development Paradigm Eastward Julia Bird, Yue Li, Hossain Zillur Rahman, Martin Rama, and Anthony J. Venables DIRECTIONS IN DEVELOPMENT Countries and Regions Overview Toward Great Dhaka A New Urban Development Paradigm Eastward Julia Bird, Yue Li, Hossain Zillur Rahman, Martin Rama, and Anthony J. Venables This booklet contains the overview, as well as a list of contents, from Toward Great Dhaka: A New Urban Development Paradigm Eastward, doi: 10.1596/978-1-4648-1238-5. A PDF of the final, full- length book, once published, will be available at https://openknowledge.worldbank.org/ and print copies can be ordered at http://Amazon.com. Please use the final version of the book for citation, reproduction, and adaptation purposes. © 2018 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org Some rights reserved This work is a product of the staff of The World Bank with external contributions. The findings, interpre- tations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Nothing herein shall constitute or be considered to be a limitation upon or waiver of the privileges and immunities of The World Bank, all of which are specifically reserved.
    [Show full text]
  • Potential Migratory Birds Habitats in the Northern Part of Bangladesh
    Potential Migratory Birds Habitats in the Northern Part of Bangladesh Fa-Tu-Zo Khaleque Milaą, Ayesha Akhter Zhilik², Ebtisamul Zannat Mim², Md Golam Rabbią ąBangladesh Forest Department, ²University of Dhaka Introduction different size, and have a complex ecosystem. On the areas having mixed soil the natural Bangladesh is a riverine country. About 800 flora had grown. In the dry season, rivers including tributaries flow through the approximately the Padma had a total of 13 country constituting a waterway of total length accreted island chars, each longer than 3.5 km around 24,140 km. The river system can be and an additional 18 island chars were each divided into four major networks: (1) between 0.35 and 3.5 km long. Char erosion Brahmaputra-Jamuna river system, (2) and accretion depends on the migration of the Ganges-Padma river system, (3) Surma- meandering bends of the river. Meghna river system, and (4) Chittagong region river system. Riverine habitats (water channels and sandbars) support a wide variety of bird species, many of The Padma-Ganges is the central part of the them nests on sandbars, others forage along or deltaic river system with hundreds of rivers. in the water channel. During winter season a Within Bangladesh, Ganges is divided into number of migratory birds invades the Padma two sections - first, the Ganges, 258 km long, char-land, and some people hunts these birds starting from the western border with India. to earn money. The second is the Padma, 120 kilometers long and from 48 km wide (Banglapedia 2006). The survey work is the result of three months Most of the major streams of the delta-rivers observation of migratory water birds at char- including its premier channel, the Ganges- lands of Padma River covering two districts of Padma, have been ceaselessly changing their Bangladesh and supported by the EAAF courses or migrating laterally and occupying through small grant.
    [Show full text]