982 Editorial Page 1 of 8 Multinomial and ordinal Logistic regression analyses with multi- categorical variables using R Jiaqi Liang, Guoshu Bi, Cheng Zhan Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China Correspondence to: Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China. Email:
[email protected]. Provenance and Peer Review: This article was commissioned by the editorial office, Annals of Translational Medicine. The article did not undergo external peer review. Comment on: Zhou ZR, Wang WW, Li Y, et al. In-depth mining of clinical data: the construction of clinical prediction model with R. Ann Transl Med 2019;7:796. Submitted Mar 17, 2020. Accepted for publication Apr 28, 2020. doi: 10.21037/atm-2020-57 View this article at: http://dx.doi.org/10.21037/atm-2020-57 It is essential in a standard linear regression analysis that calculating the points of each variable together with survival dependent variables are continuous. However, using the probabilities. standard linear regression for the analysis of a double-level The general objective of logistic regression models is to or multi-level outcome can lead to unsatisfactory results predict outcomes using variables based on certain existing because the validity of this regression model relies on the data, which have been applied in medical research for various variability of the outcome being the same for all values of diseases (8). In the study by Zhou and his colleagues (3), predictors, which is contrary to the nature of double-level the authors converted multi-categorical outcomes into or multi-level outcomes (1).