Non-Commercial Use Only

Total Page:16

File Type:pdf, Size:1020Kb

Non-Commercial Use Only Infectious Disease Reports 2020; volume 12:8376 Peritonitis from facultative presenting with Citrobacter freundii peri- anaerobic gram-negative bacilli tonitis. Correspondence: Sreedhar Adapa, The Citrobacter freundii (C. freundii) is a Nephrology Group, 568 East Herndon Avenue likely due to translocation of motile, facultative anaerobe, non-sporing #201, Fresno, CA 93720, USA. bacteria from gut in a patient gram-negative bacilli colonize in the gas- Tel.: 5592286600 - Fax: 5592263709. undergoing peritoneal dialysis trointestinal tract of humans and other ani- E-mail: [email protected] mals. It is also found in water, soil, and Key words: Citrobacter freundii, peritonitis, food.1 Werkman and Gillen discovered Sreedhar Adapa,1 Srikanth Naramala,2 SPICE organisms, peritoneal dialysis. 3 genus Citrobacter in 1932 and the organism Harmandeep Singh Tiwana, uses citrate a sole carbon source for the Contributions: All authors contributed equally 4 4 Niraj Patel, Raman Verma, energy source and hence derives its name.2 to the text of the manuscript and the literature 5 Narayana Murty Koduri, Venu Madhav C. freundii is hydrogen sulfide positive, review. SA was responsible for the original Konala6 indole negative, adonitol negative, and mal- diagnosis and treatment. Manuscript prepara- 3 tion and modification by VM. 1The Nephrology group, Fresno, CA; onate negative in character. Peritonitis 2 Department of Rheumatology, from gram-negative organisms frequently Conflict of interest: The authors declare no Adventist Medical Center, Hanford, CA; results in hospitalization, catheter loss, dial- potential conflict of interest. 3 ysis modality change, and mortality. These Department of Internal Medicine, infections are hard to treat because of Funding: None. Adventist Medical Center, Hanford, CA; biofilm formation, which makes them less 4Department of Internal Medicine, susceptible to antibiotics. Availability of data and materials: PubMed Kaweah Delta Medical Center, Visalia, database. The authors declare that data sup- CA; 5Department of Psychiatry, Great porting the findings of the discussion are Plains Health, North Platte, NE; available within the article. 6Ashland Bellefonte Cancer Center, Case Report Ethics approval and consent to participate: Ashland, KY, USA A 42-year-old male on peritoneal dialy- Our institution does not require ethical approvalonly for individual case reports. sis presented with abdominal pain and cloudy effluent of one-day duration. The Informed consent: Verbal informed consent Abstract patient denied any fever and denied any in from the patient has been obtained for their advent breach in the technique while mak- The peritonitis caused by gram-negative useanonymized information to be published in ing peritoneal dialysis connections. this article. organisms is a serious complication Moreover, the patient denied history of diar- encountered in patients undergoing peri- rhea or constipation. The patient has been Received for publication: 10 November 2019. toneal dialysis, often causing high morbidi- on peritoneal dialysis for five years and had Revision received: 5 March 2020. ty and mortality. There has been recognition no prior history of peritonitis. Past medical Accepted for publication: 25 March 2020 of peritonitis caused by uncommon organ- history was signification for diabetes, isms because of improved microbiological This work is licensed under a Creative hypertension, hyperlipidemia, hyper- detection techniques. The healthcare Commons Attribution-NonCommercial 4.0 parathyroidism, end-stage renal disease on providers involved in the management of International License (CC BY-NC 4.0). peritoneal dialysis. Home medications these patients should be very vigilant. We included metoprolol 100 milligrams (mg) © report a rare case of peritonitis caused by Copyright: the Author(s), 2020 twice a day, nifedipine 60 mg extended- Citrobacter freundii. A 42-year-old male on Licensee PAGEPress, Italy release daily, atorvastatin 80 mg daily, seve- Infectious Disease Reports 2020; 12:8376 peritoneal dialysis for five years presented lamer 2400 mg three times a day with doi:10.4081/idr.2020.8376 with abdominal pain and cloudy effluent. meals, calcitriol 0.5 micrograms (mcg) The peritoneal fluid analysis was consistent daily, gabapentin 100 mg daily at bedtime, with peritonitis, and peritoneal fluid culture cinacalcet 30 mg daily, insulin glargine 15 grew Citrobacter freundii. The patient was units daily, insulin sliding scale. 1837 cells/ul with 85% predominant neu- treated with two courses of double antibiot-Non-commercial The vital signs on presentation were the trophils. Peritoneal fluid gram stain ic coverage with intraperitoneal ceftazidime temperature of 36.4 Celsius, pulse rate of 84 revealed >100 WBC, and no organisms and oral ciprofloxacin, which failed to beats per minute, respiratory rate of 16 were seen. The patient was started on resolve the infection and hence resulted in breath per minute, blood pressure of 158/95 empiric treatment for peritonitis with the removal the peritoneal dialysis catheter mm Hg. Physical examination revealed intraperitoneal vancomycin and cef- and dialysis modality change. abdominal tenderness with a peritoneal tazidime. Later on, peritoneal fluid culture dialysis catheter in the right lower quadrant. grew Citrobacter freundii in both aerobic There was no exit site drainage or redness and anaerobic bottles. The sensitivities of Introduction along the tunnel and the rest of the physical Citrobacter freundii were listed in Table 1 Gram-negative organism peritonitis is a examination was nonsignificant. done by VITEK 2 method. severe complication encountered in patients Laboratory analysis showed white The patient was treated with double undergoing peritoneal dialysis, often caus- blood count 10300 mm3, hemoglobin 11.2 antibiotic coverage of intraperitoneal cef- ing high morbidity and mortality. The gm/dl, platelet count 22300 mm3, sodium tazidime and oral ciprofloxacin for three healthcare providers involved in the care of 138 mmol/l, potassium 4.5 mmol/l, bicar- weeks. The repeat peritoneal fluid cultures patients undergoing peritoneal dialysis bonate 22 mmol/l, blood urea nitrogen 58 after finishing the antibiotic course yielded should recognize that unusual organisms mg/dl, creatinine 11.6 mg/dl, albumin 3.3 heavy growth of C. freundii again. The sen- could cause peritonitis. We report the case g/dl. The peritoneal fluid effluent revealed sitivities of Citrobacter freundii are listed in of a 42-year-old male on peritoneal dialysis peritoneal fluid white blood cells (WBC) Table 2 done. Another three weeks course [page 16] [Infectious Disease Reports 2020; 12:8376] Case Report of double antibiotic treatment (intraperi- leads to peritoneal dialysis catheter removal gram-negative bacteria, particularly toneal ceftazidime and intravenous imipen- despite repeated courses of double antibiot- Citrobacter compared to the general popu- em) was given, which failed to clear the ic coverage.4 Dialysis patients are prone to lation. Citrobacter peritonitis tends to be organism. The symptoms resolved when have gastrointestinal colonization from polymicrobial in 10-15% episodes com- peritoneal dialysis catheter was removed after failing two double antibiotic courses. Subsequently, he did not require a further course of antibiotics. The dialysis modality of the patient was then switched to Table 1. Sensitivities of Citrobacter freundii, isolated in our patient with peritonitis. hemodialysis and the patient continues to be Antibiotic Minimum inhibitory concentration Sensitivity result hemodialysis dependent after two years of follow up. Cefazolin ≥64 mcg/ ml Resistant Cefepime ≤1 mcg/ml Sensitive Ceftazidime ≤1 mcg/ml Sensitive Ceftriaxone ≤1 mcg/ml Sensitive Discussion Ciprofloxacin 0.5 mcg/ml Sensitive C. freundii belongs to the Gentamicin ≥16 mcg/ml Resistant Enterobacteriaceae family, which accounts Imipenem 2 mcg/ml Sensitive for more than 10% of cases of peritonitis. Serratia, Pseudomonas/Providencia, indole positive Proteus/Acinetobacter/Morganella, Table 2. Sensitivities of Citrobacter freundii during antibiotic treatment. Citrobacter, Enterobacter, and Hafnia Antibiotic Minimum inhibitory concentration Sensitivity result group of organisms (SPICE) are associated with peritonitis with high mortality, and Cefazolin ≥64 mcg/ ml Resistant morbidity.4 Citrobacter has low virulence only Cefepime ≤1 mcg/ml Sensitive and accounts for 4.8% of all Ceftazidime 1 mcg/ml Sensitive Enterobacteriaceae peritonitis.5 ≤ Ceftriaxone =1 mcg/ml Sensitive C. freundii and C. koseri are the most ≤ pathogenic strains and cause seventy per- Ciprofloxacin use 1 mcg/ml Intermediate cent of human infections among the Gentamicin ≥16 mcg/ml Resistant Citrobacter genus. Other medically impor- Imipenem 1 mcg/ml Sensitive tant species in Citrobacter are C. Levofloxacin 4 mcg/ml Intermediate amalonaticus, C. farmeri, C. braakii, C. Tobramycin 8 mcg/ml Resistant werkmanii, and C. sedlakii.6 Citrobacter is the rare cause of peritonitis, and C. freundii Trimethoprim/Sulfamethoxazole ≥320 mcg/ml Resistant is the common species involved, frequently Piperacillin-tazobactam 16 mcg/ml Sensitive Table 3. Summary all the cases listed as Citrobacter freundii peritonitis with patients on dialysis as per PubMed review of literature. Author Year Age/ Duration Dialysis Polymicrobial Dialysate Treatment Catheter Outcome Gender (months) Mode association culture salvage Dervisoglu et al.8 2008 33/F 96 CAPD No Positive Intravenous No Infection
Recommended publications
  • Effects of Zinc and Menthol-Based Diets on Co-Selection of Antibiotic Resistance Among E
    animals Article Effects of Zinc and Menthol-Based Diets on Co-Selection of Antibiotic Resistance among E. coli and Enterococcus spp. in Beef Cattle Sarah A. Murray 1, Raghavendra G. Amachawadi 2 , Keri N. Norman 3 , Sara D. Lawhon 1, Tiruvoor G. Nagaraja 4 , James S. Drouillard 5 and Harvey M. Scott 1,* 1 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; [email protected] (S.A.M.); [email protected] (S.D.L.) 2 Department of Clinical Sciences, Kansas State University, Manhattan, KS 66506, USA; [email protected] 3 Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; [email protected] 4 Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA; [email protected] 5 Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(979)-847-6197 Simple Summary: As antibiotic resistance increases globally, alternatives to antibiotics are increas- ingly being investigated as growth promoters, as well as preventive and therapeutic agents, partic- ularly in agriculture. Equally important is the need for investigation into the effects of antibiotic Citation: Murray, S.A.; Amachawadi, alternatives on antibiotic resistance and particularly their risk for co-selection. In this study, we R.G.; Norman, K.N.; Lawhon, S.D.; explored the prevalence of antibiotic-resistant Escherichia coli and Enterococcus spp. in cattle fed zinc, Nagaraja, T.G.; Drouillard, J.S.; Scott, menthol or a combination of the two.
    [Show full text]
  • Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms
    materials Communication Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms Liyuan Hou and Erica L.-W. Majumder * Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +1-3154706854 Abstract: Polystyrene (PS) is one of the main polymer types of plastic wastes and is known to be resistant to biodegradation, resulting in PS waste persistence in the environment. Although previous studies have reported that some microorganisms can degrade PS, enzymes and mechanisms of microorganism PS biodegradation are still unknown. In this study, we summarized microbial species that have been identified to degrade PS. By screening the available genome information of microorganisms that have been reported to degrade PS for enzymes with functional potential to depolymerize PS, we predicted target PS-degrading enzymes. We found that cytochrome P4500s, alkane hydroxylases and monooxygenases ranked as the top potential enzyme classes that can degrade PS since they can break C–C bonds. Ring-hydroxylating dioxygenases may be able to break the side-chain of PS and oxidize the aromatic ring compounds generated from the decomposition of PS. These target enzymes were distributed in Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes, suggesting a broad potential for PS biodegradation in various earth environments and microbiomes. Our results provide insight into the enzymatic degradation of PS and suggestions for realizing the biodegradation of this recalcitrant plastic. Citation: Hou, L.; Majumder, E.L. Keywords: plastics; polystyrene biodegradation; enzymatic biodegradation; monooxygenase; alkane Potential for and Distribution of hydroxylase; cytochrome P450 Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms.
    [Show full text]
  • Upper and Lower Case Letters to Be Used
    Isolation, characterization and genome sequencing of a soil-borne Citrobacter freundii strain capable of detoxifying trichothecene mycotoxins by Rafiqul Islam A Thesis Presented to The University of Guelph In Partial Fulfilment of Requirements for the Degree of Doctor of Philosophy in Plant Agriculture Guelph, Ontario, Canada © Rafiqul Islam, April, 2012 ABSTRACT ISOLATION, CHARACTERIZATION AND GENOME SEQUENCING OF A SOIL- BORNE CITROBACTER FREUNDII STRAIN CAPABLE OF DETOXIFIYING TRICHOTHECENE MYCOTOXINS Rafiqul Islam Advisors: University of Guelph, 2012 Dr. K. Peter Pauls Dr. Ting Zhou Cereals are frequently contaminated with tricthothecene mycotoxins, like deoxynivalenol (DON, vomitoxin), which are toxic to humans, animals and plants. The goals of the research were to discover and characterize microbes capable of detoxifying DON under aerobic conditions and moderate temperatures. To identify microbes capable of detoxifying DON, five soil samples collected from Southern Ontario crop fields were tested for the ability to convert DON to a de-epoxidized derivative. One soil sample showed DON de-epoxidation activity under aerobic conditions at 22-24°C. To isolate the microbes responsible for DON detoxification (de-epoxidation) activity, the mixed culture was grown with antibiotics at 50ºC for 1.5 h and high concentrations of DON. The treatments resulted in the isolation of a pure DON de-epoxidating bacterial strain, ADS47, and phenotypic and molecular analyses identified the bacterium as Citrobacter freundii. The bacterium was also able to de-epoxidize and/or de-acetylate 10 other food-contaminating trichothecene mycotoxins. A fosmid genomic DNA library of strain ADS47 was prepared in E. coli and screened for DON detoxification activity. However, no library clone was found with DON detoxification activity.
    [Show full text]
  • 2021 ECCMID | 00656 in Vitro Activities of Ceftazidime-Avibactam and Comparator Agents Against Enterobacterales
    IHMA In Vitro Activities of Ceftazidime-avibactam and Comparator Agents against Enterobacterales and 2122 Palmer Drive 00656 Schaumburg, IL 60173 USA Pseudomonas aeruginosa from Israel Collected Through the ATLAS Global Surveillance Program 2013-2019 www.ihma.com M. Hackel1, M. Wise1, G. Stone2, D. Sahm1 1IHMA, Inc., Schaumburg IL, USA, 2Pfizer Inc., Groton, CT USA Introduction Results Results Summary Avibactam (AVI) is a non-β- Table 1 Distribution of 2,956 Enterobacterales from Israel by species Table 2. In vitro activity of ceftazidime-avibactam and comparators agents Figure 2. Ceftazidime and ceftazidime-avibactam MIC distribution against 29 . Ceftazidime-avibactam exhibited a potent lactam, β-lactamase inhibitor against Enterobacterales and P. aeruginosa from Israel, 2013-2019 non-MBL carbapenem-nonsusceptible (CRE) Enterobacterales from Israel, antimicrobial activity higher than all Organism N % of Total mg/L that can restore the activity of Organism Group (N) %S 2013-2019 comparator agents against all Citrobacter amalonaticus 2 0.1% MIC90 MIC50 Range ceftazidime (CAZ) against Enterobacterales (2956) 20 Enterobacterales from Israel (MIC90, 0.5 Citrobacter braakii 5 0.2% Ceftazidime-avibactam 99.8 0.5 0.12 ≤0.015 - > 128 Ceftazidime Ceftazidime-avibactam organisms that possess Class 18 mg/L; 99.8% susceptible). Citrobacter freundii 96 3.2% Ceftazidime 70.1 64 0.25 ≤0.015 - > 128 A, C, and some Class D β- Cefepime 71.8 > 16 ≤0.12 ≤0.12 - > 16 16 . Susceptibility to ceftazidime-avibactam lactmase enzymes. This study Citrobacter gillenii 1 <0.1% Meropenem 98.8 0.12 ≤0.06 ≤0.06 - > 8 increased to 100% for the Enterobacterales Amikacin 95.4 8 2 ≤0.25 - > 32 14 examined the in vitro activity Citrobacter koseri 123 4.2% when MBL-positive isolates were removed Colistin (n=2544)* 82.2 > 8 0.5 ≤0.06 - > 8 12 of CAZ-AVI and comparators Citrobacter murliniae 1 <0.1% Piperacillin-tazobactam 80.4 32 2 ≤0.12 - > 64 from analysis.
    [Show full text]
  • Citrobacter Braakii
    & M cal ed ni ic li a l C G f e Trivedi et al., J Clin Med Genom 2015, 3:1 o n l o a m n r DOI: 10.4172/2472-128X.1000129 i u c s o Journal of Clinical & Medical Genomics J ISSN: 2472-128X ResearchResearch Article Article OpenOpen Access Access Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Sambhu Charan Mondal2 and Snehasis Jana2* 1Trivedi Global Inc., Eastern Avenue Suite A-969, Henderson, NV, USA 2Trivedi Science Research Laboratory Pvt. Ltd., Chinar Fortune City, Hoshangabad Rd., Madhya Pradesh, India Abstract Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analysed on day 10 while Gr. IIB was stored and analysed on day 159 (Study I). After retreatment on day 159, the sample (Study II) was divided into three separate tubes. First, second and third tube was analysed on day 5, 10 and 15, respectively. All experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing of lyophilized treated sample was carried out to correlate the phylogenetic relationship of C.
    [Show full text]
  • Prevalence of Beta-Lactam Drug-Resistance Genes in Commensal
    bioRxiv preprint doi: https://doi.org/10.1101/824516; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Prevalence of beta-lactam drug-resistance genes in commensal 2 Escherichia coli contaminating ready-to-eat lettuce 3 4 Ningbo Liao a,b, Julia Rubin a, Yuan Hu a, Hector A. Ramirez a, Clarissa Araújo 5 Borges a, Biao Zhoub, Yanjun Zhang b, Ronghua Zhang b, Jianmin Jiang b and 6 Lee W. Riley a† 7 8 9 a School of Public Health, Division of Infectious Diseases and Vaccinology, University of 10 California, Berkeley, California 94720, USA; 11 b Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and 12 Prevention, Hangzhou 310006, China. 13 14 †Corresponding author 15 Phone: 510-642-9200 16 E-mail addresses: [email protected] 17 18 19 20 ABSTRACT 21 The objective of this study was to evaluate the prevalence of antibiotic resistance and 22 beta-lactam drug resistance genes in Escherichia coli isolated from ready-to-eat 23 lettuce, obtained from local supermarkets in Northern California. Bags of lettuce were 24 purchased from 4 chain supermarkets during three different periods—Oct 2018–Jan 25 2019, Feb 2019–Apr 2019 and May 2019–July 2019. From 91 packages of lettuce, we 26 recovered 34 E. coli isolates from 22 (24%) lettuce samples. All E.
    [Show full text]
  • ( 12 ) United States Patent
    US009956282B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,956 , 282 B2 Cook et al. (45 ) Date of Patent: May 1 , 2018 ( 54 ) BACTERIAL COMPOSITIONS AND (58 ) Field of Classification Search METHODS OF USE THEREOF FOR None TREATMENT OF IMMUNE SYSTEM See application file for complete search history . DISORDERS ( 56 ) References Cited (71 ) Applicant : Seres Therapeutics , Inc. , Cambridge , U . S . PATENT DOCUMENTS MA (US ) 3 ,009 , 864 A 11 / 1961 Gordon - Aldterton et al . 3 , 228 , 838 A 1 / 1966 Rinfret (72 ) Inventors : David N . Cook , Brooklyn , NY (US ) ; 3 ,608 ,030 A 11/ 1971 Grant David Arthur Berry , Brookline, MA 4 ,077 , 227 A 3 / 1978 Larson 4 ,205 , 132 A 5 / 1980 Sandine (US ) ; Geoffrey von Maltzahn , Boston , 4 ,655 , 047 A 4 / 1987 Temple MA (US ) ; Matthew R . Henn , 4 ,689 ,226 A 8 / 1987 Nurmi Somerville , MA (US ) ; Han Zhang , 4 ,839 , 281 A 6 / 1989 Gorbach et al. Oakton , VA (US ); Brian Goodman , 5 , 196 , 205 A 3 / 1993 Borody 5 , 425 , 951 A 6 / 1995 Goodrich Boston , MA (US ) 5 ,436 , 002 A 7 / 1995 Payne 5 ,443 , 826 A 8 / 1995 Borody ( 73 ) Assignee : Seres Therapeutics , Inc. , Cambridge , 5 ,599 ,795 A 2 / 1997 McCann 5 . 648 , 206 A 7 / 1997 Goodrich MA (US ) 5 , 951 , 977 A 9 / 1999 Nisbet et al. 5 , 965 , 128 A 10 / 1999 Doyle et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 ,589 , 771 B1 7 /2003 Marshall patent is extended or adjusted under 35 6 , 645 , 530 B1 . 11 /2003 Borody U .
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • Diverse Endophytic Bacteria Isolated from a Leguminous Tree Conzattia Multixora Grown in Mexico
    Arch Microbiol (2006) 186:251–259 DOI 10.1007/s00203-006-0141-5 ORIGINAL PAPER Diverse endophytic bacteria isolated from a leguminous tree Conzattia multiXora grown in Mexico En Tao Wang · Zhi Yuan Tan · Xian Wu Guo · Rolando Rodríguez-Duran · Gisela Boll · Esperanza Martínez-Romero Received: 1 March 2006 / Revised: 18 May 2006 / Accepted: 24 May 2006 / Published online: 22 July 2006 © Springer-Verlag 2006 Abstract Conzattia multiXora is a leguminous tree Introduction present only in Mexico and Guatemala. There is no record about its symbiotic or pathogenic microbes. In The endophytes are microorganisms residing in the tis- this study, we found that numerous bacteria with sue of living plants and do not visibly harm the plants 104–106 individuals per gram of fresh epidermis were (Hallmann et al. 1997). These microorganisms are rela- distributed in the tissue of this plant. All the bacteria tively unstudied and are potential sources of novel nat- isolated from the Conzattia epidermis were Gram-neg- ural products for exploitation in medicine, agriculture, ative, facultative anaerobic rods and formed yellow or and industry (Strobel et al. 2004). In nature, each indi- colorless colonies. They were identiWed as endophytes vidual plant is the host to one or more kinds of endo- by inoculation tests. Some of the bacteria could signiW- phyte and only a handful of these plants (grass species) cantly promote the growth of Conzattia seedlings. Nine have been studied in regard to their endophytic biol- diVerent groups were deWned by PCR-based RFLP, ogy. Thus there is a great opportunity to Wnd new and which were classiWed as Pantoea, Erwinia, Salmonella, interesting endophytic microorganisms among myriad Enterobacter, Citrobacter and Klebsiella by the phylo- plants in diVerent settings and ecosystems (Strobel genetic analysis of 16S rRNA genes.
    [Show full text]
  • Isolation and Characterization of an Arsenate-Reducing Bacterium and Its Application for Arsenic Extraction from Contaminated Soil
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Muroran-IT Academic Resource Archive Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil 著者 CHANG Young-Cheol, NAWATA Akinori, JUNG Kweon, KIKUCHI Shintaro journal or Journal of Industrial Microbiology & publication title Biotechnology volume 39 number 1 page range 37-44 year 2011-06-17 URL http://hdl.handle.net/10258/666 doi: info:doi/10.1007/s10295-011-0996-6 Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil 著者 CHANG Young-Cheol, NAWATA Akinori, JUNG Kweon, KIKUCHI Shintaro journal or Journal of Industrial Microbiology & publication title Biotechnology volume 39 number 1 page range 37-44 year 2011-06-17 URL http://hdl.handle.net/10258/666 doi: info:doi/10.1007/s10295-011-0996-6 1 Isolation and characterization of an arsenate-reducing bacterium and its application for 2 arsenic extraction from contaminated soil 3 4 Young C. Chang1*, Akinori Nawata1, Kweon Jung2 and Shintaro Kikuchi2 5 1Biosystem Course, Division of Applied Sciences, Muroran Institute of Technology, 27-1 6 Mizumoto, Muroran 050-8585, Japan, 2Seoul Metropolitan Government Research Institute of 7 Public Health and Environment, Yangjae-Dong, Seocho-Gu, Seoul 137-734, Republic of 8 Korea 9 10 *Corresponding author: 11 Phone: +81-143-46-5757; Fax: +81-143-46-5757; E-mail: [email protected] 12 1 13 Abstract 14 A gram-negative anaerobic bacterium, Citrobacter sp. NC-1, was isolated from soil 15 contaminated with arsenic at levels as high as 5000 mg As kg-1.
    [Show full text]
  • Prevalence of Beta-Lactam Drug-Resistance Genes in Commensal
    bioRxiv preprint doi: https://doi.org/10.1101/824516; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Prevalence of beta-lactam drug-resistance genes in commensal 2 Escherichia coli contaminating ready-to-eat lettuce 3 4 Ningbo Liao a,b, Julia Rubin a, Yuan Hu a, Hector A. Ramirez a, Clarissa Araújo 5 Borges a, Biao Zhoub, Yanjun Zhang b, Ronghua Zhang b, Jianmin Jiang b and 6 Lee W. Riley a† 7 8 9 a School of Public Health, Division of Infectious Diseases and Vaccinology, University of 10 California, Berkeley, California 94720, USA; 11 b Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and 12 Prevention, Hangzhou 310006, China. 13 14 †Corresponding author 15 Phone: 510-642-9200 16 E-mail addresses: [email protected] 17 18 19 20 ABSTRACT 21 The objective of this study was to evaluate the prevalence of antibiotic resistance and 22 beta-lactam drug resistance genes in Escherichia coli isolated from ready-to-eat 23 lettuce, obtained from local supermarkets in Northern California. Bags of lettuce were 24 purchased from 4 chain supermarkets during three different periods—Oct 2018–Jan 25 2019, Feb 2019–Apr 2019 and May 2019–July 2019. From 91 packages of lettuce, we 26 recovered 34 E. coli isolates from 22 (24%) lettuce samples. All E.
    [Show full text]