The Relationship of Alcohol Dependence to Monoamine Oxidase A

Total Page:16

File Type:pdf, Size:1020Kb

The Relationship of Alcohol Dependence to Monoamine Oxidase A The Relationship of Alcohol Dependence to Monoamine Oxidase A by Brittany Matthews A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Pharmacology and Toxicology University of Toronto © Copyright by Brittany Matthews 2015 The Relationship of Alcohol Dependence to Monoamine Oxidase A Brittany Matthews Doctor of Philosophy Department of Pharmacology and Toxicology University of Toronto 2015 Abstract Background: Alcohol dependence (AD) is a substance abuse disorder characterized by compulsive alcohol seeking and intake, combined with a negative emotional state during withdrawal. AD is also associated with markers of apoptosis and/or oxidative stress across multiple organs. Monoamine oxidase A (MAO-A) is an important enzyme that participates in the cellular response to oxidative stress, and is elevated during major depressive episodes, somewhat more robustly in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). It is unknown whether MAO-A levels are abnormal in AD. The current studies examine whether: i) MAO-A level is elevated in the PFC and ACC in AD in humans. ii) Chronic harman exposure, a MAO-A inhibitor found in alcoholic beverages, upregulates MAO-A in the PFC and ACC of rodents. iii) Chronic alcohol exposure upregulates MAO-A in the PFC and ACC of rodents. Methods: i) Sixteen participants with AD underwent [ 11 C]-harmine positron emission tomography to determine MAO-A distribution volume (VT), an index of MAO-A level. ii ii) Rats were treated with harman for 21 days (0, 2, 5, 15 mg/kg/day) via osmotic minipump. MAO-A protein and activity levels, measured with Western blot and a spectrophotometric assay respectively, were assessed immediately and after 8-hour withdrawal. iii) Rats were exposed to alcohol vapor for 8 weeks, 17 hours per day. MAO-A protein/activity levels were assessed immediately and after 24-hour, 4-day, and 21-day withdrawal. Results: i) MAO-A V T was significantly greater in all brain regions analyzed in AD. ii) MAO-A protein/activity levels were not altered by harman administration. iii) MAO-A protein/activity levels were elevated in the PFC and ACC after 24-hour withdrawal from alcohol exposure. There were no changes at any other timepoints. Conclusion: These findings identify elevated MAO-A level as a new pathological marker present in AD that is therapeutically targetable through direct inhibition. MAO-A protein/activity levels were not changed by harman administration, suggesting chronic MAO-A inhibition does not alter MAO-A level. The human PET findings, measured in early withdrawal from alcohol dependence, were replicated in the rodent model of chronic alcohol exposure in the PFC and ACC, suggesting that alcohol exposure likely led to elevated MAO-A in AD. iii Acknowledgments First, I would like to thank my supervisor Dr. Jeffrey Meyer and co-supervisor Dr. Stephen Kish for giving me the opportunity to work under their supervision at the Centre for Addiction and Mental Health. They have been excellent mentors and I am grateful for their guidance and encouragement throughout my doctoral program. I would also like to thank my PhD supervisory committee members, Drs. Jose Nobrega, Isabelle Boileau, and Junchao Tong for their valuable insight and helpful suggestions. A special thank you to the members of both the Meyer and Kish lab, as well as the PET imaging technicians, who have shared their technical expertise and contributed to various parts of my PhD thesis. Finally, I would like to thank my family and friends for their unconditional love and support, without which the completion of this thesis would not have been possible. iv Table of Contents List of Tables .............................................................................................................................. viii List of Figures ............................................................................................................................... ix List of Abbreviations ................................................................................................................... xi 1 Introduction .............................................................................................................................. 1 1.1 Overview ............................................................................................................................ 1 1.1.1 Statement of the Problem ........................................................................................ 1 1.1.2 Purpose of the Study ............................................................................................... 2 1.2 Background ....................................................................................................................... 3 1.2.1 Importance of Alcohol Dependence ....................................................................... 3 1.2.2 Brief Review of Major Structural and Neurochemical Abnormalities in Alcohol Dependence ............................................................................................... 5 1.2.2.1 Structural Alterations ................................................................................ 5 1.2.2.2 Cellular Alterations .................................................................................. 6 1.2.2.3 Markers associated with Apoptosis in Alcohol Dependence ................... 8 1.2.2.4 Markers associated with Oxidative Stress in Alcohol Dependence ......... 9 1.2.2.5 Monoamine Receptor and Transporter Abnormalities ........................... 11 1.2.3 Alcohol Dependence and Mood ............................................................................ 14 1.2.4 Pathways and Common Pathologies of Comorbid Alcohol Dependence and Major Depressive Disorder ................................................................................... 18 1.2.5 Monoamine Oxidase A ......................................................................................... 20 1.2.5.1 General Properties of MAO-A ............................................................... 20 1.2.5.2 Substrates of MAO-A ............................................................................. 26 1.2.5.3 Radiotracers for Imaging MAO-A ......................................................... 28 1.2.6 Role of MAO-A in Mood Disorders ..................................................................... 31 1.2.7 Monoamine Oxidase A in Alcohol Dependence in Humans ................................ 33 1.2.8 Rationale for Investigating MAO-A in Alcohol Dependence .............................. 38 v 1.2.8.1 Alcohol Dependence and Dysphoric Mood ........................................... 38 1.2.8.2 Monoamine Oxidase A and Models of Alcohol Dependence in Rodents ................................................................................................... 38 1.2.8.3 Alcohol Dependence and Predisposition to Apoptosis .......................... 39 1.2.9 Role of Monoamine Oxidase A Inhibitor Harman in Addiction .......................... 41 1.3 Study Objectives and Research Hypotheses ................................................................. 47 2 Methods ................................................................................................................................... 51 2.1 Human PET Imaging Study of MAO-A in Alcohol Dependence ............................... 51 2.1.1 Study Participants and Protocol for PET Imaging Scan ....................................... 51 2.1.2 PET Image Acquisition and Analysis ................................................................... 53 2.1.3 Statistical Analysis ................................................................................................ 56 2.2 Studies of the effect of Harman and Alcohol Exposure on MAO-A in Rodents ....... 57 2.2.1 Animals ................................................................................................................. 57 2.2.2 Harman Osmotic Minipump Exposure ................................................................. 57 2.2.3 Ethanol Vapor Exposure ....................................................................................... 58 2.2.4 Measurement of MAO Protein .............................................................................. 60 2.2.5 Measurement of MAO Activity ............................................................................ 61 2.2.6 Measurement of GFAP ......................................................................................... 62 2.2.7 Statistical Analysis ................................................................................................ 63 3 Results ..................................................................................................................................... 64 3.1 Human PET Imaging Study of MAO-A in Alcohol Dependence ............................... 64 3.1.1 Difference in MAO-A V T between the Alcohol Dependent Group and Healthy Controls ................................................................................................................. 64 3.1.2 Relationship between MAO-A V T and Duration of Heavy Alcohol Use ............. 67 3.1.3 Relationship between MAO-A V T and Other Clinical Features ........................... 69 3.1.4 Additional Characteristics of the Alcohol Dependent Group ............................... 73 3.2 Studies of the effect of Harman and Alcohol Exposure on MAO-A in Rodents ....... 74 vi 3.2.1 Effect of Harman Exposure on MAO ..................................................................
Recommended publications
  • Neurotransmitter Resource Guide
    NEUROTRANSMITTER RESOURCE GUIDE Science + Insight doctorsdata.com Doctor’s Data, Inc. Neurotransmitter RESOURCE GUIDE Table of Contents Sample Report Sample Report ........................................................................................................................................................................... 1 Analyte Considerations Phenylethylamine (B-phenylethylamine or PEA) ................................................................................................. 1 Tyrosine .......................................................................................................................................................................................... 3 Tyramine ........................................................................................................................................................................................4 Dopamine .....................................................................................................................................................................................6 3, 4-Dihydroxyphenylacetic Acid (DOPAC) ............................................................................................................... 7 3-Methoxytyramine (3-MT) ............................................................................................................................................... 9 Norepinephrine ........................................................................................................................................................................
    [Show full text]
  • Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions
    PsychoTropical Commentaries (2016) 1:1 – 90 © Fernwell Publications Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions PK Gillman PsychoTropical Research, Bucasia, Queensland, Australia Abstract This comprehensive monograph surveys original data on the subject of both dietary tyramine and drug interactions relevant to Monoamine Oxidase Inhibitors (MAOIs), about which there is much outdated, incorrect and incomplete information in the medical literature and elsewhere. Fewer foods than previously supposed have problematically high tyramine levels because international food hygiene regulations have improved both production and handling. Cheese is the only food that has, in the past, been associated with documented fatalities from hypertension, and now almost all ‘supermarket’ cheeses are perfectly safe in healthy-sized portions. The variability of sensitivity to tyramine between individuals, and the sometimes unpredictable amount of tyramine content in foods, means a little knowledge and care are still advised. The interactions between MAOIs and other drugs are now well understood, are quite straightforward, and are briefly summarized here (by a recognised expert). MAOIs have no apparently clinically relevant pharmaco-kinetic interactions, and the only significant pharmaco-dynamic interaction, other than the ‘cheese reaction’ (caused by indirect sympatho-mimetic activity [ISA], is serotonin toxicity ST (aka serotonin syndrome) which is now well defined and straightforward to avoid by not co-administering any drug with serotonin re-uptake inhibitor (SRI) potency. There are no therapeutically used drugs, other than SRIs, that are capable of inducing serious ST with MAOIs. Anaesthesia is not contra- indicated if a patient is taking MAOIs. Most of the previously held concerns about MAOIs turn out to be mythical: they are either incorrect, or over-rated in importance, or stem from apprehensions born out of insufficient knowledge.
    [Show full text]
  • S41598-021-90243-1.Pdf
    www.nature.com/scientificreports OPEN Metabolomics and computational analysis of the role of monoamine oxidase activity in delirium and SARS‑COV‑2 infection Miroslava Cuperlovic‑Culf1,2*, Emma L. Cunningham3, Hossen Teimoorinia4, Anuradha Surendra1, Xiaobei Pan5, Stefany A. L. Bennett2,6, Mijin Jung5, Bernadette McGuiness3, Anthony Peter Passmore3, David Beverland7 & Brian D. Green5* Delirium is an acute change in attention and cognition occurring in ~ 65% of severe SARS‑CoV‑2 cases. It is also common following surgery and an indicator of brain vulnerability and risk for the development of dementia. In this work we analyzed the underlying role of metabolism in delirium‑ susceptibility in the postoperative setting using metabolomic profling of cerebrospinal fuid and blood taken from the same patients prior to planned orthopaedic surgery. Distance correlation analysis and Random Forest (RF) feature selection were used to determine changes in metabolic networks. We found signifcant concentration diferences in several amino acids, acylcarnitines and polyamines linking delirium‑prone patients to known factors in Alzheimer’s disease such as monoamine oxidase B (MAOB) protein. Subsequent computational structural comparison between MAOB and angiotensin converting enzyme 2 as well as protein–protein docking analysis showed that there potentially is strong binding of SARS‑CoV‑2 spike protein to MAOB. The possibility that SARS‑CoV‑2 infuences MAOB activity leading to the observed neurological and platelet‑based complications of SARS‑CoV‑2 infection requires further investigation. COVID-19 is an ongoing major global health emergency caused by severe acute respiratory syndrome coro- navirus SARS-CoV-2. Patients admitted to hospital with COVID-19 show a range of features including fever, anosmia, acute respiratory failure, kidney failure and gastrointestinal issues and the death rate of infected patients is estimated at 2.2%1.
    [Show full text]
  • Bibliography & Appendix
    Bibliography Abou-Sleiman, P. M., Muqit, M. M. K. & Wood, N. W. 2006. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nature reviews neuroscience. 7: 207- 219. Agid, Y., Destée, A., Durif, F., Montastruc, J. L. & Pollak, P. 1997. Tolcapone, romocriptine, and Parkinson’s disease. The lancet . 350: 712-713. Anderson, M. C., Hasan, F., Mccrodden, J. M. & Tipton, K. F. 1993. Monoamine oxidase inhibitors and the cheese effect. Neurochemical research. 18 : 1145-1149. Avner, D. L. 2000. Clinical experience with pantoprazole in gastroesophageal reflux disease. Clinical therapeutics . 22: 1169-1185. Bach, A. W., Lan, N. C., Johnson, D. L., Abell, C. W., Bembenek, M. E., Kwan, S. W., Seeburg, P. H. & Shih, J. C. 1988. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proceedings of the national academy of sciences of the United States of America . 85: 4934-4938. Baker, G. B., Coutts, R. T., Mckenna, K. F. & Sherry-Mckenna, R. L. 1992. Insights into the mechanisms of action of the MAO inhibitors phenelzine and tranylcypromine: a review. Journal of psychiatry and neuroscience. 17 : 206-214. Barden, T. P., Peter, J. B. & Merkatz, I. R. 1980. Ritodrine hydrochloride: a betamimetic agent for use in preterm labor. Journal of the American college of obstetricians and gynecologists . 56: 1-6. Bergström, M., Westerberg, G., Németh, G., Traut, M., Gross, G., Greger, G., Müller- Peltzer, H., Safer, A., Eckernäs, S. Å., Grahnér, A. & Långström, B. 1997. MAO-A inhibition in brain after dosing with esuprone, moclobemide and placebo in healthy volunteers: in vivo studies with positron emission tomography.
    [Show full text]
  • The Effects of Phenelzine and Other Monoamine Oxidase Inhibitor
    British Journal of Phammcology (1995) 114. 837-845 B 1995 Stockton Press All rights reserved 0007-1188/95 $9.00 The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver 12 imidazoline-preferring receptors Regina Alemany, Gabriel Olmos & 'Jesu's A. Garcia-Sevilla Laboratory of Neuropharmacology, Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, E-07071 Palma de Mallorca, Spain 1 The binding of [3H]-idazoxan in the presence of 106 M (-)-adrenaline was used to quantitate 12 imidazoline-preferring receptors in the rat brain and liver after chronic treatment with various irre- versible and reversible monoamine oxidase (MAO) inhibitors. 2 Chronic treatment (7-14 days) with the irreversible MAO inhibitors, phenelzine (1-20 mg kg-', i.p.), isocarboxazid (10 mg kg-', i.p.), clorgyline (3 mg kg-', i.p.) and tranylcypromine (10mg kg-', i.p.) markedly decreased (21-71%) the density of 12 imidazoline-preferring receptors in the rat brain and liver. In contrast, chronic treatment (7 days) with the reversible MAO-A inhibitors, moclobemide (1 and 10 mg kg-', i.p.) or chlordimeform (10 mg kg-', i.p.) or with the reversible MAO-B inhibitor Ro 16-6491 (1 and 10 mg kg-', i.p.) did not alter the density of 12 imidazoline-preferring receptors in the rat brain and liver; except for the higher dose of Ro 16-6491 which only decreased the density of these putative receptors in the liver (38%). 3 In vitro, phenelzine, clorgyline, 3-phenylpropargylamine, tranylcypromine and chlordimeform dis- placed the binding of [3H]-idazoxan to brain and liver I2 imidazoline-preferring receptors from two distinct binding sites.
    [Show full text]
  • Treatment of Social Phobia with Antidepressants
    Antidepressants for Social Phobia Treatment of Social Phobia With Antidepressants Franklin R. Schneier, M.D. This article reviews evidence for the utility of antidepressant medications in the treatment of social phobia. Monoamine oxidase inhibitors (MAOIs) were the first antidepressants shown to be effective © Copyrightfor social phobia, but 2001dietary restrictions Physicians and a relatively Postgraduate high rate of adverse effects Press, often relegate Inc. MAOIs to use after other treatments have been found ineffective. Reversible inhibitors of monoamine oxidase (RIMAs) hold promise as safer alternatives to MAOIs, but RIMAs may be less effective and are currently unavailable in the United States. Selective serotonin reuptake inhibitors (SSRIs), of which paroxetine has been the best studied in social phobia to date, have recently emerged as a first- line treatment for the generalized subtype of social phobia. The SSRIs are well tolerated and consis- tently have been shown to be efficacious in controlled trials. (J Clin Psychiatry 2001;62[suppl 1]:43–48) arly evidence that antidepressantsOne might personal have utility copy maypressant be printed treatment of other anxiety disorders, such as panic E in the treatment of social phobia emerged in the disorder and obsessive-compulsive disorder. In particular, 1970s when studies found efficacy for monoamine oxidase the high rate of comorbidity of anxiety disorders with de- inhibitors (MAOIs) in patient samples that included both pression3 makes treatment with antidepressants an efficient
    [Show full text]
  • Insights Into the Mechanisms of Action Ofthe MAO Inhibitors Phenelzine and Tranylcypromine
    Insights into the Mechanisms of Action of the MAO Inhibitors Phenelzine and Tranylcypromine: A Review Glen B. Baker, Ph.D., Ronald T. Coutts, Ph.D., D.Sc., Kevin F. McKenna, M.D., and Rhonda L. Sherry-McKenna, B.Sc. Neurochemical Research Unit, Department of Psychiatry and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta Submitted: July 10, 1992 Accepted: October 7, 1992 Although the non-selective monoamine oxidase inhibitors phenelzine and tranylcypromine have been used for many years, much still remains to be understood about their mechanisms of action. Other factors, in addition to the inhibition of monoamine oxidase and the subsequent elevation of brain levels of the catecholamines and 5-hydroxytryptamine, may contribute to the overall pharma- cological profiles ofthese drugs. This review also considers the effects on brain levels of amino acids and trace amines, uptake and release of neurotransmitter amines at nerve terminals, receptors for amino acids and amines, and enzymes other than monoamine oxidase, including enzymes involved in metabolism of other drugs. The possible contributions of metabolism and stereochemistry to the actions of these monoamine oxidase inhibitors are discussed. Key Words: amino acids, monoamine oxidase, neurotransmitter amines, phenelzine, tranylcypromine, uptake Despite the fact that the non-selective monoamine oxidase nerve endings (Baker et al 1977; Raiteri et al 1977) and/or (MAO) inhibitors phenelzine (PLZ) and tranylcypromine may act as neuromodulators through direct actions on recep- (TCP) (see Fig. 1) have been used clinically for many years, tors for the catecholamines and/or 5-HT (Jones 1983; much remains to be learned about theirmechanisms ofaction.
    [Show full text]
  • 3. Monomine Oxidase Inal finding by a Replication Study in an Independent Ital- Ian Sample
    Abstracts S96 229. ASSOCIATION BETWEEN ALLELIC VARIATION the U.K. blood transfusion service. Genotyping was done IN THE SEROTONIN TRANSPORTER GENE AND PER- on an ABI 373 DNA sequencer using the ABI GENESCAN VASIVE DEVELOPMENTAL DISORDER. 1Zwaigenbaum and GENOTYPER software. Patient and control data were L, 2Mejia J, 1Szatmari P, 2Palmour R, 3Jones MB, 2Paliouras analysed by CLUMP vs 1.1 and 2 × 2 contingency tables G, 1Bryson SE, 1Bartolucci G, 1Mahoney W.. 1Centre for were analysed by Pearson chi square test. Studies of Children at Risk, Department of Psychiatry, Alleles containing 3 and 4 repeats were most fre- McMaster University, Hamilton, Ontario; 2Department of quent, making up 35% and 62% of the sample respect- Human Genetics and Psychiatry, McGill University, Mon- ively. No significant differences were observed in allele treal, Quebec; 3Department of Behavioural Science, Penn frequency between patients and controls, p=0.188. When State, Hershey, Pennsylvania. the alleles were grouped into high and low expression, Serotonin has long been suggested to play a role in again no significant differences were observed, ␹2=1.81, the pathophysiology of autism/pervasive developmental p=0.25. Male and female data were also analysed separ- disorder (PDD). Cook and colleagues (1997) first reported ately (male, n=108; female, n=46), with no significant dif- an preliminary evidence of linkage and association ferences. between autism and the serotonin transporter (5HTT) gene (short variant of the second intron of the promoter region). Subsequent efforts have failed to replicate this finding, 1 Sabol et al. (1998): Hum Genet 103: 273–279 although one group has found preferential transmission of 2 Williams et al.
    [Show full text]
  • Monoamine Oxidase a Gene Promoter Variation and Rearing Experience Influences Aggressive Behavior in Rhesus Monkeys Timothy K
    Monoamine Oxidase A Gene Promoter Variation and Rearing Experience Influences Aggressive Behavior in Rhesus Monkeys Timothy K. Newman, Yana V. Syagailo, Christina S. Barr, Jens R. Wendland, Maribeth Champoux, Markus Graessle, Stephen J. Suomi, J. Dee Higley, and Klaus-Peter Lesch Background: Allelic variation of the monoamine oxidase A (MAOA) gene has been implicated in conduct disorder and antisocial, aggressive behavior in humans when associated with early adverse experiences. We tested the hypothesis that a repeat polymorphism in the rhesus macaque MAOA gene promoter region influences aggressive behavior in male subjects. Methods: Forty-five unrelated male monkeys raised with or without their mothers were tested for competitive and social group aggression. Functional activity of the MAOA gene promoter polymorphism was determined and genotypes scored for assessing genetic and environmental influences on aggression. Results: Transcription of the MAOA gene in rhesus monkeys is modulated by an orthologous polymorphism (rhMAOA-LPR) in its upstream regulatory region. High- and low-activity alleles of the rhMAOA-LPR show a genotype ϫ environment interaction effect on aggressive behavior, such that mother-reared male monkeys with the low-activity-associated allele had higher aggression scores. Conclusions: These results suggest that the behavioral expression of allelic variation in MAOA activity is sensitive to social experiences early in development and that its functional outcome might depend on social context. Key Words: MAOA, promoter, VNTR, rearing, aggression, rhesus large family (Brunner et al 1993). Affected male subjects exhibit markedly disturbed monoamine metabolism and an absence of he interaction between genes and environment has long MAOA enzymatic activity in cultured fibroblasts.
    [Show full text]
  • Redox Biology 7 (2016) 21–29
    Redox Biology 7 (2016) 21–29 Contents lists available at ScienceDirect Redox Biology journal homepage: www.elsevier.com/locate/redox Research Paper The antimalarial drug primaquine targets Fe–S cluster proteins and yeast respiratory growth Anaïs Lalève a, Cindy Vallières b, Marie-Pierre Golinelli-Cohen c, Cécile Bouton c, Zehua Song a, Grzegorz Pawlik a,1, Sarah M. Tindall b, Simon V. Avery b, Jérôme Clain d, Brigitte Meunier a,n a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris‐Sud, Université Paris‐Saclay, 91198 Gif‐sur‐Yvette cedex, France b School of Life Sciences, University Park, University of Nottingham, NG7 2RD, Nottingham, UK c Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France d UMR 216, Faculté de Pharmacie de Paris, Université Paris Descartes, and Institut de Recherche pour le Développement, 75006 Paris, France article info abstract Article history: Malaria is a major health burden in tropical and subtropical countries. The antimalarial drug primaquine Received 13 October 2015 is extremely useful for killing the transmissible gametocyte forms of Plasmodium falciparum and the Received in revised form hepatic quiescent forms of P. vivax. Yet its mechanism of action is still poorly understood. In this study, 22 October 2015 we used the yeast Saccharomyces cerevisiae model to help uncover the mode of action of primaquine. We Accepted 22 October 2015 found that the growth inhibitory effect of primaquine was restricted to cells that relied on respiratory function to proliferate and that deletion of SOD2 encoding the mitochondrial superoxide dismutase se- Keywords: verely increased its effect, which can be countered by the overexpression of AIM32 and MCR1 encoding Mitochondria mitochondrial enzymes involved in the response to oxidative stress.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0011643 A1 Dilisa Et Al
    US 2015 0011643A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0011643 A1 DiLisa et al. (43) Pub. Date: Jan. 8, 2015 (54) TREATMENT OF HEART FAILURE AND (60) Provisional application No. 61/038,230, filed on Mar. ASSOCATED CONDITIONS BY 20, 2008, provisional application No. 61/155,704, ADMINISTRATION OF MONOAMINE filed on Feb. 26, 2009. OXIDASE INHIBITORS (71) Applicants:Nazareno Paolocci, Baltimore, MD Publication Classification (US); Univeristy of Padua, Padova (IT) (51) Int. Cl. (72) Inventors: Fabio DiLisa, Padova (IT): Ning Feng, A63L/38 (2006.01) Baltimore, MD (US); Nina Kaludercic, (52) U.S. Cl. Baltimore, MD (US); Nazareno CPC ..... ... A61 K31/138 (2013.01) Paolocci, Baltimore, MD (US) USPC .......................................................... S14/651 (21) Appl. No.: 14/332,234 (22) Filed: Jul. 15, 2014 (57) ABSTRACT Related U.S. Application Data Administration of monoamine oxidase inhibitors is useful in (63) Continuation of application No. 12/407,739, filed on the prevention and treatment of heart failure and incipient Mar. 19, 2009, now abandoned. heart failure. Patent Application Publication Jan. 8, 2015 Sheet 1 of 2 US 201S/0011643 A1 Figure 1 Sial 8. Sws-L) Cleaved Š Caspase-3 ) Figure . Prevention of caspase-3 productief) fron cardiomyocytes Lapoi) reatment with clorgyi Be. Patent Application Publication Jan. 8, 2015 Sheet 2 of 2 US 201S/0011643 A1 Figure 2 8:38:8 ::::::::8: US 2015/0011643 A1 Jan. 8, 2015 TREATMENT OF HEART FAILURE AND in the art is a variety of MAO inhibitors and their pharmaceu ASSOCATED CONDITIONS BY tically acceptable compositions for administration, in accor ADMINISTRATION OF MONOAMINE dance with the present invention, to mammals including, but OXIDASE INHIBITORS not limited to, humans.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]