Artificial Neural Networks Generation Using Grammatical Evolution Khabat Soltanian1, Fardin Akhlaghian Tab2, Fardin Ahmadi Zar3, Ioannis Tsoulos4 1Department of Software Engineering, University of Kurdistan, Sanandaj, Iran,
[email protected] 2Department of Engineering, University of Kurdistan, Sanandaj, Iran,
[email protected] 3Department of Engineering, University of Kurdistan, Sanandaj, Iran,
[email protected] 4Department of Computer Science, University of Ioannina, Ioannina, Greece,
[email protected] Abstract: in this paper an automatic artificial neural network BP). GE is previously used for neural networks generation method is described and evaluated. The proposed construction and training and successfully tested on method generates the architecture of the network by means of multiple classification and regression benchmarks [3]. In grammatical evolution and uses back propagation algorithm for training it. In order to evaluate the performance of the method, [3] the grammatical evolution creates the architecture of a comparison is made against five other methods using a series the neural networks and also suggest a set for the weights of classification benchmarks. In the most cases it shows the of the constructed neural network. Whereas the superiority to the compared methods. In addition to the good grammatical evolution is established for automatic experimental results, the ease of use is another advantage of the programming tasks not the real number optimization. method since it works with no need of experts. Thus, we altered the grammar to generate only the Keywords- artificial neural networks, evolutionary topology of the network and used BP algorithm for computing, grammatical evolution, classification problems. training it. The following section reviews several evolutionary 1.