3Rd Annual PKI R & D Workshop Proceedings

Total Page:16

File Type:pdf, Size:1020Kb

3Rd Annual PKI R & D Workshop Proceedings 3rd Annual PKI R& D Workshop Proceedings Krishna I. Sankaf William T. Polk* b Nelson E. Hastings 'Cisco Systems U S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Information Technology Laboratory Gaithersburg, MD 20899*8230 QC Nisr IOO National Institute off Standards and Technology Technology Administration U.S. Department of Commerce * HX7- SLOO^f NISTIR 7122 3d Annual PKI R & D Workshop Proceedings Krishna I. Sankaf * William T. Polk b Nelson E. Hastings 'Cisco Systems U. S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Information Technology Laboratory Gaithersburg, MD 20899-8230 September 2004 U.S. DEPARTMENT OF COMMERCE Donald L Evans, Secretary TECHNOLOGY ADMINISTRATION Phillip J. Bond, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arden L. Bement, Jr., Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. 3rd Annual PKI R&D Workshop—Proceedings Foreward NIST hosted the third annual Public Key infrastructure (PKI) Research and Development Workshop on April 12-14, 2004. The two and a half day event brought together PKI experts from academia, industry, and government to explore the remaining challenges in deploying public key authentication and authorization technologies. These proceedings includes the 10 refereed papers, and captures the essence of the six panels and interaction at the workshop. The first two workshops concentrated on PKI theory, architectures, human factors, and deployment. Building on this prelude, the third workshop focused on applying PKI technology to the problem of authorization, current real world interoperability issues and solutions, and retrospective views of PKI technology - taking stock of the progress and failures in PKI’s evolution. Stefan Brands’ keynote presentation, which focused on the limitations of traditional authentication primitives in cross-domain environments, opened the workshop. The rest of day one explored PKI and authorization, including several techniques for delegating and sharing authorizations, a decentralized technique for X.509 based authorization for wireless networks, and a role sharing technique leveraging passwords and PKI. Day two of the workshop featured Peter Gutmann’s keynote presentation describing six “Grand Challenges” facing PKI technology, and proposing various solutions. The papers and panels which followed spanned a wide range of topics including PKI interoperability problems and solutions faced by real world PKI projects, trusted archiving, document signatures, and a retrospective look at the history of PKI. Ken Klingenstein’s keynote presentation on the necessity to interconnect a variety of security technologies beyond PKI to achieve our security goals kicked off the final day of the workshop. Day three topics included approaches and workarounds to path discovery, PKI deployment issues encountered by Johnson & Johnson, and results of the OASIS PKI survey. The workshop concluded with a panel discussion on the potential impact of the OASIS report. The workshop also included a work-in-progress session and a birds-of-a-feather session during the evenings at the workshop hotel. Attendees included presenters from the United Kingdom, Canada, New Zealand, and Japan. Due to the success of this event, a fourth workshop is planned for 2005. William T. Polk and Nelson E. Hastings National Institute of Standards and Technology Gaithersburg, MD USA iii rd 3 Annual PKI R&D Workshop - Proceedings This page has been left intentionally blank. iv 1 rd 3 Annual PKI R&D Workshop - Proceedings 2004 PKI R&D Workshop Gaithersburg, Maryland USA April 12-14, 2004 http://middleware.intemet2.edu/pki04/ (Pre-proceedings were distributed at the workshop) SUMMARIES Provided by Ben Chinowsky, Internet Workshop Summary 1 NIH-EDUCAUSE PKI Interoperability Project: Phase Three Document Signatures Johnson & Johnson’s Use of Public Key Technology How to Build a PKI that Works Controlled and Dynamic Delegation of Rights Approaches to Certificate Path Discovery Non-lntrusive Cross-Domain Identity Management Which PKI Approach for Which Application Domain A New and Improved Unified Field Theory of Trust The PKI Action Plan: Will it make a Difference? Works in Progress Session 1 REFERRED PAPERS Role Sharing in Password-Enabled PKI 13 Xunhua Wang James Madison University Samuel Redwine James Madison University Greenpass: Decentralized, PKI-based Authorization for Wireless LANs 26 Nicholas C. Goffee Dartmouth College Sung Hoon Kim Dartmouth College Sean Smith Dartmouth College Punch Taylor Dartmouth College Meiyuan Zhao Dartmouth College John Marchesini Dartmouth College v . rd 3 Annual PKI R&D Workshop - Proceedings X.509 Proxy Certificates for Dynamic Delegation 42 Von Welch NCSA, University of Illinois Ian Foster Argonne National Lab/University of Chicago Carl Kesselman University of Southern California Oile Mulmo Royal Institute of Technology, Sweden Laura Pearlman University of Southern California Steve Tuecke Argonne National Laboratory Jarek Gawor Argonne National Laboratory Sam Meder University of Chicago Frank Siebenlist Argonne National Laboratory Experiences of establishing trust in a distributed system operated by mutually distrusting parties 59 Scott Crawford Enterprise Management Associates David Chadwick University of Salford Trusted Archiving 71 Santosh Chokhani Orion Security Solutions Carl Wallace Orion Security Solutions PKI: Ten Years Later 80 Carlisle Adams University of Ottawa Mike Just Treasury Board of Canada An Examination of Asserted PKI Issues and Proposed Alternatives 96 John Linn RSA Laboratories Marc Branchaud RSA Security Inc Private Revocation Test using Oblivious Membership Evaluation Protocol 110 Hiroaki Kikuchi Tokai University “Dynamic Bridge” Concept Paper 119 Ken Stillson Mitretek Systems Identifying and Overcoming Obstacles to PKI Deployment and Usage 131 Stephen R. Hanna Sun Microsystems, Inc. Jean Pawluk Inovant vi rd 3 Annual PKI R&D Workshop - Proceedings Organizers General Chair: Ken Klingenstein, University of Colorado Program Chair: Krishna Sankar, Cisco Systems Steering Committee Chair: Neal McBurnett, Internet Local Arrangements Chair: Nelson Hastings, NIST Scribe: Ben Chinowsky, Internet2 Program Committee Peter Alterman, NIH Bill Burr, NIST Yassir Elley, Sun Microsystems Carl Ellison, Microsoft Stephen Farrell, Trinity College Dublin Richard Guida, Johnson & Johnson Peter Honeyman, University of Michigan Russ Housley, Vigil Security LLC Ken Klingenstein, University of Colorado Olga Kornievskaia, University of Michigan Neal McBurnett, Internet2 Clifford Neuman, USC Eric Norman, University of Wisconsin Tim Polk, NIST Ravi Sandhu, George Mason University; NSD Security Krishna Sankar (Chair), Cisco Systems Jeff Schiller, MIT Frank Siebenlist, Argonne National Laboratory Sean Smith, Dartmouth College Michael Wiener, Cryptographic Clarity Archival Sites PKI 2003: http://middleware.intemet2.edu/pki03 PKI 2002: http://www.cs.dartmouth.edu/~pki02 rd 3 Annual PKI R&D Workshop - Proceedings This page has been left intentionally blank. VIII 3rd Annual PKI R&D Workshop—Proceedings 3rd Annual PKI R&D Workshop Summary Ben Chinowsky, Intemet2 The workshop announcement listed the goals of this gathering as: 1 . Explore the current state of public key technology in different domains including web services, grid technologies, authentication systems et. al. in academia & research, government and industry. 2. Share & discuss lessons learned and scenarios from vendors and practitioners on current deployments. 3. Provide a forum for leading security researchers to explore the issues relevant to the PKI space in areas of security management, identity, trust, policy, authentication and authorization. This summary groups workshop sessions according to which of these goals was their primary concern, although many sessions addressed more than one. Surveying Deployments Dr. Susan Zevin, Acting Director of the Information Technology Laboratory at NIST, opened the meeting by noting some Federal PKI highlights. The Federal Bridge Certification Authority now connects six Federal agencies. The Department of Defense now requires contractors to obtain PKI credentials for email and authentication to DoD web sites. Several countries and international associations, including Canada, Australia, and NATO, are negotiating to connect to the Federal PKI. NIST is a global leader in smartcards and biometrics and their integration with PKI. A panel discussion with Peter Alterman, Deb Blanchard, Russ Weiser, and Scott Rea discussed the NIH-EDUCAUSE PKI Interoperability Project: Phase Three. This project has been largely driven by the Government Paperwork Elimination Act; in order for virtual paperwork not to become just as much of a hassle as the physical paperwork it replaces, reducing the number of certificates each person needs (“reusability”) is essential. While this is still at the technology-demonstration stage — a production implementation has additional, expensive, datacenter requirements — various agencies including GSA and HHS are adopting elements for production use. This uptake in
Recommended publications
  • Treasury X.509 Certificate Policy [TREASURYCP].” It Only Addresses Where an OLT PKI’S Requirements Differ from the Requirements for Basic Assurance in [TREASURYCP]
    UNCLASSIFIED UNITED STATES DEPARTMENT OF THE TREASURY DEPARTMENT OF THE TREASURY PUBLIC KEY INFRASTRUCTURE (PKI) X.509 CERTIFICATE POLICY VERSION 3.4 April 27, 2021 PKI Policy Management Authority (PMA) DATE DANIEL W. WOOD 1 UNCLASSIFIED DOCUMENT VERSION CONTROL Version Date Author(s) Description Reason For Change Bring the Treasury PKI Policy into Department of the compliance with FPKIPA change Treasury PKI Policy in 2.0 January 2008 James Schminky proposal requiring all cross certified RFC PKI Policies to be in RFC 3647 3647 format. format. As a result of mapping the Treasury Errata changes to sections PKI Policy to Federal Policy, a 2.2.1, 2.1 March 17, 2009 James Schminky number of minor changes and 4.8, 4.912, 5.5, and omissions where identified and 7.1.3. corrected. As a result of the PMA annual Errata changes to sections review a number of minor 5.6, and 6.3.2. Change corrections, Federal Bridge proposal changes to 2.4, 2.2 March 11, 2010 James Schminky Certification Authority (FBCA) 4.2.2, 5.1, 5.1.1 5.1.2.1, Policy Change Proposal Number: 5.4.4, 5.4.5, 6.1.6, 6.5.1, 2009-02 and 2010-01, and Treasury and 6.7. Change Proposal Change proposal changes As a result of FBCA Policy Change 2.3 April 15, 2010 James Schminky to 8.1 and 8.4. Proposal Number: 2010-02. Changes Proposal As a result of FBCA Policy Change Changes to 1.3.1.8, Proposal Numbers; 2010-3 thru 8 2.4 March 22, 2011 James Schminky 3.1.1&.2, 3.1.5, 3.2.3.1, and CPCA policy Change Proposal 4.7, 6.1.5, 8.1, and 9.4.3.
    [Show full text]
  • Using Frankencerts for Automated Adversarial Testing of Certificate
    Using Frankencerts for Automated Adversarial Testing of Certificate Validation in SSL/TLS Implementations Chad Brubaker ∗ y Suman Janay Baishakhi Rayz Sarfraz Khurshidy Vitaly Shmatikovy ∗Google yThe University of Texas at Austin zUniversity of California, Davis Abstract—Modern network security rests on the Secure Sock- many open-source implementations of SSL/TLS are available ets Layer (SSL) and Transport Layer Security (TLS) protocols. for developers who need to incorporate SSL/TLS into their Distributed systems, mobile and desktop applications, embedded software: OpenSSL, NSS, GnuTLS, CyaSSL, PolarSSL, Ma- devices, and all of secure Web rely on SSL/TLS for protection trixSSL, cryptlib, and several others. Several Web browsers against network attacks. This protection critically depends on include their own, proprietary implementations. whether SSL/TLS clients correctly validate X.509 certificates presented by servers during the SSL/TLS handshake protocol. In this paper, we focus on server authentication, which We design, implement, and apply the first methodology for is the only protection against man-in-the-middle and other large-scale testing of certificate validation logic in SSL/TLS server impersonation attacks, and thus essential for HTTPS implementations. Our first ingredient is “frankencerts,” synthetic and virtually any other application of SSL/TLS. Server authen- certificates that are randomly mutated from parts of real cer- tication in SSL/TLS depends entirely on a single step in the tificates and thus include unusual combinations of extensions handshake protocol. As part of its “Server Hello” message, and constraints. Our second ingredient is differential testing: if the server presents an X.509 certificate with its public key.
    [Show full text]
  • Implementing PKI Services on Z/OS
    Front cover Implementing PKI Services on z/OS Installation of PKI and all of its prerequistes on z/OS An example of the PKI Exit PKI’s use of ICSF to store Master Key Chris Rayns Theo Antoff Jack Jones Patrick Kappeler Vicente Ranieri Roland Trauner ibm.com/redbooks International Technical Support Organization Implementing PKI Services on z/OS February 2004 SG24-6968-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (February 2004) This edition applies to z/OS Version 1, Release 3. © Copyright International Business Machines Corporation 2004. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this redbook. ix Become a published author . x Comments welcome. xi Chapter 1. Security Server PKI Services. 1 1.1 Overview of digital certificate. 2 1.2 The PKIX standards . 4 1.2.1 CA hierarchy . 6 1.2.2 The X.509 certificate and Certificate Revocation List . 9 1.2.3 The x.509 v3 certificate extension fields . 14 1.2.4 Certificate and CRL appearance. 17 1.3 The z/OS PKI Services . 21 1.3.1 Security Server PKI Services in z/OS . 21 1.3.2 Prerequisite products . 22 1.3.3 Requests supported by z/OS PKI Services. 23 1.3.4 Browser and server certificates. 24 1.3.5 The z/OS PKI Services architecture . 26 1.4 Security Server PKI Services enhancement in z/OS V1R4.
    [Show full text]
  • Amazon Trust Services Certificate Policy
    Certificate Policy Version 1.0.9 1 1 INTRODUCTION ................................................................................................................................................... 13 1.1 Overview ...................................................................................................................................................... 13 1.1.1 Compliance ............................................................................................................................................ 13 1.1.2 Types of Certificates .............................................................................................................................. 13 1.1.2.1 CA-Certificates .............................................................................................................................. 13 1.1.2.1.1 Missing Heading ........................................................................................................................ 14 1.1.2.1.2 Missing Heading ........................................................................................................................ 14 1.1.2.1.3 Terminus CA-Certificates .......................................................................................................... 14 1.1.2.1.4 Policy CA-Certificates ................................................................................................................ 14 1.1.2.1.5 Technically Constrained CA-Certificates ..................................................................................
    [Show full text]
  • How to Build an X.509 PKI That Works
    How to build a PKI that works Peter Gutmann University of Auckland How to build an X.509 PKI that works Peter Gutmann University of Auckland Preliminaries Whose PKI are we talking about here? •Not SSL certs –Certificate manufacturing, not PKI It’s just an expensive way of doing authenticated DNS lookups with a TTL of one year. Plenty of PK, precious little I — Peter Gutmann on the crypto list •Not PGP, SPKI, *ML, etc –Doing fairly well in their (low-I) area •Not government PKI initiatives –Government IT project reality distortion field, keep pumping in money until it cries Uncle –Even then, the reality distortion has failed in parts of Europe, Australia Preliminaries (ctd) This is PKI for the rest of us •Businesses, individuals, etc Talk covers exclusively technical issues •Policies are someone else’s problem Ted says that whenever he gets asked a religious question he doesn’t understand he always responds with “Ah, that must be an ecumenical matter” which universally produces nods of admiration at the profound wisdom of the statement. It seems that that the PKIX list equivalent is “Ah, that must be a policy matter” — Father Ted (via Anon) •Some religion may sneak in Preliminaries (ctd) Microsoft bashing: An apology in advance •Their PKI software is the most widespread, and features prominently in examples because of this •There is no indication that other software is any better, it just gets less publicity It may be a little controversial… 56th IETF agenda item, submitted as a joke when someone pointed out that PKIX didn’t have any agenda What needs to be done to make PKI work? This forum will be open to all PKIX members, and will constitute a large pool filled knee-deep with custard.
    [Show full text]
  • Security Policies for the Federal Public Key Infrastructure
    Security Policies for the Federal Public Key Infrastructure Noel A. Nazario Security Technology Group National Institute of Standards and Technology Abstract This document discusses provisions for the handling of security policies in the proposed Federal Public Key Infrastructure (PKI). Federal PKI policies deal with the generation, deactivation, and dissemination of public key certificates, the integrity of the infrastructure, maintenance of records, identification of certificate holders, and the establishment of trust relationships between Certification Authorities (CAs). The verification of a digital signature is not sufficient indication of the trustworthiness of an electronic message or data file. The verifier needs to factor the trustworthiness of the CAs involved in the certification of the sender. To accomplish this, the verifier needs to examine the certificate policy for those CAs. The Federal PKI Technical Security Policy establishes guidelines for the operation of Federal CAs and the identification of the parties requesting certification. It also defines Policy Approving Authorities (PAA) responsible for assessing the policies and operational practices of all Federal CAs within a domain and assigning them corresponding Federal Assurance Levels. These assurance levels may be used in lieu of a certificate policy when making an on-line determination of the trustworthiness of a certificate. Key words Certificate policy, Federal Assurance Levels, PAA, PKI, Policy Approving Authority, public key infrastructure, security policy. SECURITY POLICIES FOR THE FEDERAL PUBLIC KEY INFRASTRUCTURE Noel A. Nazario NIST North, Room 426 820 West Diamond Avenue Gaithersburg, MD 20899 [email protected] Introduction and Background This paper discusses provisions for the handling of security policies in the proposed Federal Public Key Infrastructure (PKI).
    [Show full text]
  • Certificate Policy of the Public Key Infrastructure in The
    Certificate Policy of the Public Key Infrastructure in the Deutsche Forschungsnetz - Grid - DFN-Verein Grid-CP V1.4, May 2008 This document and all parts thereof are copyrighted. Distribution or reproduction of the document in unchanged form is explicitly allowed. No transfer of this document, either in whole or in part, into modifiable electronic formats is al- lowed without permission of the DFN-Verein. Contact: [email protected] © DFN-Verein 2008 DFN-Verein - 2 - Grid-CP V1.4 CONTENTS 1 INTRODUCTION.......................................................................................................5 1.1 Overview..........................................................................................................5 1.2 Document name and identification ......................................................................5 1.3 PKI participants ................................................................................................6 1.4 Certificate usage................................................................................................7 1.5 Policy administration .........................................................................................7 1.6 Definitions and acronyms....................................................................................7 2 PUBLICATION AND REPOSITORY RESPONSIBILITIES...................................................7 2.1 Repositories......................................................................................................7 2.2 Publication of certification information..................................................................7
    [Show full text]
  • The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP Antoine Delignat-Lavaud, Inria Paris Joint Work with K
    The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP Antoine Delignat-Lavaud, Inria Paris Joint work with K. Bhargavan, C. Fournet, A. Pionti, P.-Y. Strub INTRODUCTION Introduction Cookie Cutter Virtual Host Confusion Crossing Origin Boundaries Shared Session Cache Shared Reverse Proxies SPDY Connection Pooling Triple Handshake Conclusion Why do we need TLS? 1. Authentication – Must be talking to the right guy 2. Integrity – Our messages cannot be tampered 3. Confidentiality – Messages are only legible to participants 4. Privacy? – Can’t tell who we are and what we talk about Why do we need TLS? 1. Authentication – Must be talking to the right guy Active Attacks 2. Integrity (MitM) – Our messages cannot be tampered 3. Confidentiality – Messages are only legible to participants Passive Attacks 4. Privacy? (Wiretapping) – Can’t tell who we are and what we talk about What websites expect of TLS • Web attacker – Controls malicious websites – User visits honest and malicious sites in parallel – Web/MitB attacks: CSRF, XSS, Redirection… • Network attacker – Captures (passive) and tampers (active) packets What websites expect of TLS • Web attacker – Controls malicious websites – User visits honest and malicious sites in parallel – Web/MitB attacks: CSRF, XSS, Redirection… • Network attacker Strictly stronger – Captures (passive) and tampers (active) packets What websites expect of TLS If a website W served over HTTP is secure against a Web attacker, then serving W over HTTPS makes it secure against a network attacker. What websites expect of TLS If a website W served over HTTP is secure against a Web attacker, then serving W over HTTPS makes it secure against a network attacker.
    [Show full text]
  • RSA Certificate Manager Version 6.7 Security Target
    RSA Certificate Manager Version 6.7 Security Target RSA Security Inc. 174 Middlesex Turnpike Bedford, MA 01730 USA Tel: 877-RSA-4900 Fax: 781-515-5010 E-mail: [email protected] Web: http://www.rsasecurity.com Document ID: ASE Issue Number: 1.7 Date: December 7, 2006 © RSA Security, Inc., 2006 RSA Certificate Manager Version 6.7 Security Target Revisions to Document Date Ver. Author Changes Made Aug. 18 2006 1.0 MJM Update to RCM v6.7 Aug. 24, 2006 1.1 TC Updated by SAIC for CCv2.3 changes Oct. 15, 2006 1.2 MJM Error corrections and updates Oct. 22, 2006 1.4 MJM Corrections per RSA ETR ASE – Revised (SAIC): • Changed cover page, updated year of pub. to 2006 • Section 1.1 corrected TOE identification • Section 1.1 corrected conformance “Part 3 augmented” • Many changes to SFR conventions • Section 5.1 backed out “based on the auditable event…” from FAU_GEN.1.2 (not a CCv2.3 change) • Section 5.1 fixed PP operation convention in FAU_SAR.1 • Section 5.1 backed out “no other actions” change from FAU_STG.4.1 (not a CCv2.3 change) • Section 5.2 added dependency to FMT_MOF.1.1, FMT_MSA.1.1, FMT_MTD.1.1 • Section 5.4 added FIA_USB.1.2 and FIA_USB.1.3 • Section 5.6 added AES/FIPS197 to FCS_CKM.1.1 • Section 5.6 added dependency to FCS_CKM.4.1 • Section 5.8 added algorithms, keylengths and dependency to FCS_COP.1.1 • Section 6.1 backed out “based on the auditable event…” from FAU_GEN.1.2 (not a CCv2.3 change) • Section 6.1 backed out “no other actions” change from FAU_STG.4.1 (not a CCv2.3 change) • Section 6.2 added dependency to FMT_MOF.1.1 • Section 6.5 removed reference to OCSP from assignment in FIA_UAU.1.1 and FIA_UID.1.1 • Section 6.5 added FIA_USB.1.2 and FIA_USB.1.3 • Section 6.6 reversed change in FDP_ITT.1.1 • Section 6.10 added note re.
    [Show full text]
  • The Most Dangerous Code in the World: Validating SSL Certificates In
    The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser Software Martin Georgiev Subodh Iyengar Suman Jana The University of Texas Stanford University The University of Texas at Austin at Austin Rishita Anubhai Dan Boneh Vitaly Shmatikov Stanford University Stanford University The University of Texas at Austin ABSTRACT cations. The main purpose of SSL is to provide end-to-end security SSL (Secure Sockets Layer) is the de facto standard for secure In- against an active, man-in-the-middle attacker. Even if the network ternet communications. Security of SSL connections against an is completely compromised—DNS is poisoned, access points and active network attacker depends on correctly validating public-key routers are controlled by the adversary, etc.—SSL is intended to certificates presented when the connection is established. guarantee confidentiality, authenticity, and integrity for communi- We demonstrate that SSL certificate validation is completely bro- cations between the client and the server. Authenticating the server is a critical part of SSL connection es- ken in many security-critical applications and libraries. Vulnerable 1 software includes Amazon’s EC2 Java library and all cloud clients tablishment. This authentication takes place during the SSL hand- based on it; Amazon’s and PayPal’s merchant SDKs responsible shake, when the server presents its public-key certificate. In order for transmitting payment details from e-commerce sites to payment for the SSL connection to be secure, the client must carefully verify gateways; integrated shopping carts such as osCommerce, ZenCart, that the certificate has been issued by a valid certificate authority, Ubercart, and PrestaShop; AdMob code used by mobile websites; has not expired (or been revoked), the name(s) listed in the certifi- Chase mobile banking and several other Android apps and libraries; cate match(es) the name of the domain that the client is connecting Java Web-services middleware—including Apache Axis, Axis 2, to, and perform several other checks [14, 15].
    [Show full text]
  • A Pki Architecture Using Open Source Software for E- Government Services in Romania
    Nicusor Vatra et al./ Indian Journal of Computer Science and Engineering (IJCSE) A PKI ARCHITECTURE USING OPEN SOURCE SOFTWARE FOR E- GOVERNMENT SERVICES IN ROMANIA NICUȘOR VATRA The Doctoral School Department, The Bucharest Academy of Economic Studies, 6, Romana Square, district 1 Bucharest, 010374, Romania [email protected] http://doctorat.ase.ro Abstract This article presents an architecture based on Open Source software that promote citizen’s access to electronic services in a secure way and attempt to make an analysis between two different Open Source Public Key Infrastructure software: OpenCA PKI and EJBCA. The architecture represents a suitable solution for a large enterprise or public administration that enables security and easy management of electronic documents in e-Government Services area. Keywords: - public key infrastructure, e-Government Services, Open Source, encryption, electronic signature. 1. Introduction The recent technological developments such as extension of modern communication and particularly the Internet boom have made the electronic world to create brand new opportunities for realizing transactions on the Internet. Due to ease to use, flexibility but also lack of explicit rules and restrictions, the Internet has become the most popular platform and the most important communication channel for the electronic transactions. One of the major characteristics of any electronic transactions performed on the Internet is trust. On the Internet, where there is no direct contact between parties and millions of users exchange information daily is necessary to take security measures to validate our collaborators, customers and suppliers prior to the exchange information’s, goods and services or make payments. Public Key Infrastructure (PKI) provides the needed trust using Trusted Third Parties (TTPs) known as Certification Authorities (CAs) [1].
    [Show full text]
  • ATIS-1000080.V003, Signature-Based Handling of Asserted Information Using Tokens (SHAKEN): Governance Model and Certificate Management
    ATIS-1000080.v003 Signature-based Handling of Asserted information using toKENs (SHAKEN): Governance Model and Certificate Management JOINT STANDARD As a leading technology and solutions development organization, the Alliance for Telecommunications Industry Solutions (ATIS) brings together the top global ICT companies to advance the industry’s most pressing business priorities. ATIS’ nearly 200 member companies are currently working to address the All-IP transition, 5G, network functions virtualization, big data analytics, cloud services, device solutions, emergency services, M2M, cyber security, network evolution, quality of service, billing support, operations, and much more. These priorities follow a fast-track development lifecycle — from design and innovation through standards, specifications, requirements, business use cases, software toolkits, open source solutions, and interoperability testing. ATIS is accredited by the American National Standards Institute (ANSI). The organization is the North American Organizational Partner for the 3rd Generation Partnership Project (3GPP), a founding Partner of the oneM2M global initiative, a member of the International Telecommunication Union (ITU), as well as a member of the Inter-American Telecommunication Commission (CITEL). For more information, visit www.atis.org. The SIP Forum is a leading IP communications industry association that engages in numerous activities that promote and advance SIP-based technology, such as the development of industry recommendations; interoperability testing
    [Show full text]