entropy Article MapEff: An Effective Graph Isomorphism Agorithm Based on the Discrete-Time Quantum Walk Kai Liu 1,2,* , Yi Zhang 1,2, Kai Lu 1,2, Xiaoping Wang 3,*, Xin Wang 1,2 and Guojing Tian 4 1 College of Computer, National University of Defense Technology, Changsha 410073, China;
[email protected] (Y.Z.);
[email protected] (K.L.);
[email protected] (X.W.) 2 Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China 3 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China 4 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
[email protected] * Correspondence:
[email protected] (K.L.);
[email protected] (X.W.) Received: 18 March 2019; Accepted: 29 May 2019; Published: 5 June 2019 Abstract: Graph isomorphism is to determine whether two graphs have the same topological structure. It plays a significant role in areas of image matching, biochemistry, and information retrieval. Quantum walk, as a novel quantum computation model, has been employed to isomorphic mapping detection to optimize the time complexity compared with a classical computation model. However, these quantum-inspired algorithms do not perform well—and even cease to work—for graphs with inherent symmetry, such as regular graphs. By analyzing the impacts of graphs symmetry on isomorphism detection, we proposed an effective graph isomorphism algorithm (MapEff) based on the discrete-time quantum walk (DTQW) to improve the accuracy of isomorphic mapping detection, especially for regular graphs. With the help of auxiliary edges, this algorithm can distinguish the symmetric nodes efficiently and, thus, deduct the qualified isomorphic mapping by rounds of selections.