Guiding Center Motion

Total Page:16

File Type:pdf, Size:1020Kb

Guiding Center Motion GUIDING CENTER MOTION H.J. de Blank FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands, www.differ.nl. ABSTRACT Secondly, the Coulomb force is a long range interaction. In a well-ionized plasma, particles rarely suffer large-angle The motion of charged particles in slowly varying electro- deflections in two-particle collisions. Rather, their orbits are magnetic fields is analyzed. The strength of the magnetic deflected through weak interactions with many particles si- field is such that the gyro-period and the gyro-radius of the multaneously. Hence, the effects of collisions can be best particle motion around field lines are the shortest time and described statistically, in terms of distributions of particles. length scales of the system. The particle motion is described The kinetic equation for the particle distribution function as the sum of a fast gyro-motion and a slow drift velocity. will be discussed at the end of this chapter, with emphasis on the role of the particle orbits, not the collisions. The equations of motion of a particle with mass m and I. INTRODUCTION charge q in electromagnetic fields E(x, t) and B(x, t) are, The interparticle forces in ordinary gases are short-ranged, q x˙ = v, v˙ = (E + v B), (1) so that the constituent particles follow straight lines between m × collisions. At low densities where collisions become rare, N the gas molecules bounce up and down between the walls of where the dot denotes the time derivative. Each of the the containing vessel before experiencing a collision. plasma particles satisfies such equations. The solutions to the 6N equations are the particle trajectories. These trajec- High-temperature plasmas, however, cannot be con- tories determine the local charge and current density which tained by a material vessel, but only by magnetic fields. The are the sources in Maxwell’s equations and which determine Lorentz forces that act on the particles tie them to the mag- the electromagnetic fields E and B. In turn, these fields de- netic field and forcethem to follow the field lines. In orderto termine the particle trajectories. This self-consistent picture confine the particles in a bounded volume, the magnetic field is extremely complex. must be curved and inhomogeneous. In addition, it must be However, as illustrated above, in a weakly collisional strong. So strong, that the Lorentz force dominates all other plasma one can first study the behaviour of test particles in forces. Therefore, charged particles do not follow straight given fields E(x, t) and B(x, t). The role of the particles lines between collisions but follow strongly curved orbits as sources of charge density and current in Maxwell’s equa- under the influence of the magnetic field. In fact, many tions is disregarded. The fields E and B of course obey the properties of a magnetically confined plasma are dominated subset of Maxwell’s equations, by the motion of the particles subject to the Lorentz force qv B B . Here is the macroscopic field, i.e., the sum E = ∂B/∂t, B = 0. (2) of externally× applied field and the fields generated by the ∇ × − ∇· plasma particles collectively, but excluding the microscopic variations of the fields due to the individual particles. II. GYRATION AND DRIFT The particle motion in the macroscopic field is the sub- ject of this lecture. The microscopic fields, i.e., the interac- A. Motion in a Constant Magnetic Field tions between individual particles (“collisions”), cause devi- Let us first consider the motion of a charged particle in the ations from these particle orbits. Collisions in a plasma are presence of a constant magnetic field B, caused by Coulomb interactions between the particles, with properties that are very different from collisions in a gas. mv˙ = q(v B). Firstly, the cross-section of Coulomb collisions is a × strongly decreasing function of the energies of the interact- The kinetic particle energy remains constant because the ing particles. Hence, the mean free paths of chargedparticles Lorentz force is always perpendicularto the velocity and can in high-temperaturefusion devices are very long and the par- thus change only its direction, but not its magnitude. The ticles will trace out their trajectories over distances that can particle velocity can be decomposed into components paral- be comparable to or even larger than the size of the device lel and perpendicular to the magnetic field, v = v b + v , k ⊥ before they are swept out of their orbits by collisions. where b B/B is the unit vector in the direction of ≡ 60 (a) (b) B, v|| B Fg e1 Figure 3: ion and elec- e v v ion φ tron drifts mg/qB in a ρρρ ρρ gravitational field. e2 electron B ρρρ x B. Drift due to an Additional Force R Ο If, in addition to the Lorentz force, a constant force F acts Figure 1: Definition of the gyro-angle φ (a) and guiding center (b). on the charged particle, the equation of motion is mv˙ = q (v B) + F . (4) × B. The Lorentz force does not affect the parallel motion: The motion of the particle due to F can be separated from v = constant. Only v interacts with B, leading to a k ⊥ the gyration due to B by using the guiding center as refer- circular motion perpendicular to B. The centrifugal force ence frame. Again the guiding center position R, the posi- mv2 /r balances the Lorentz force qv B for a gyration ra- ⊥ ⊥ tion of the particle x, and the gyration radius vector ρ are dius r equal to the “Larmor radius” related as in Eq. (3). The velocity of the guiding center can mv be obtained by differentiating the equation R = x ρ, ρ ⊥ . ≡ q B − | | ˙ 1 2 vg R = x˙ ρ˙ If we set 2 mv = kT for the two dimensional thermal mo- ≡ − m ⊥ 1/2 = v + v˙ B tion B, we obtain ρ = (2mkT ) / q B. In a typical 2 ⊥ | | qB × fusion plasma (kT = 10 keV, B = 5 T) the electrons have a 1 = v + (qv B + F ) B. gyroradius of 67 µm and deuterons 4.1 mm. qB2 × × The frequency of the gyration, called cyclotron fre- quency ωc, follows from v = ωc ρ, Using (v B) B = v B2 and v v = v b we obtain ⊥ × × − ⊥ − ⊥ k ω = qB/m. c F B vg = v b + × . In fusion experiments the electron cyclotron frequency is k qB2 of the same order of magnitude as the plasma frequency. Alhough the particle motion in a constant field is elemen- Thus, one sees that any force with a component perpendic- tary, the following notation will also serve more complicated ular to B causes a particle to drift perpendicular to both F and B. The basic mechanism for a drift in this direction is cases. Let e1, e2 be unit vectors perpendicular to each other and to b, and define co-rotating unit vectors (Fig. 1(a)): a periodic variation of the gyro-radius. When a particle ac- celerates in a force field, the gyroradius increases and when e (t) = e1 cos φ + e2 sin φ, ⊥ it slows down its gyroradius decreases, leading to the non- eρ(t) = e2 cos φ e1 sin φ, φ = φ0 ωct. closed trajectories shown in Fig. 3. The net effect is a drift − − perpendicular to the force and the magnetic field. As illustrated in Fig. 1(b), the particle position x can be de- A force parallel to B does not lead to a drift, but simply composed into a guiding center position R that moves with causes a parallel acceleration as can be seen from Eq. (4). velocity v b, and a rotating gyration radius vector ρ, k Summarizing, x = R + ρ, (3a) m F B dvg, F ρ = v B = ρ sgn(q) e , (3b) vg, = ⊥ × , k = k . (5) −qB2 × ρ ⊥ qB2 dt m v = ρ˙ = v e . (3c) ⊥ ⊥ ⊥ An example is the drift due to a constant gravitational The particle trajectory is a helix around the guiding center force Fg = mg perpendicular to the magnetic field. The re- magnetic field line (Fig. 2). sulting drift velocity, vg = mg/qB, is in opposite directions for electrons and ions (see Fig. 3). The net effect is a current v magnetic density. However, in laboratory plasmas g is far to small to 8 field be of importance(2 10− m/s in a magnetic field B = 5 T). × C. E B Drift × ions electrons A different situation arises in the presence of a constant elec- Figure 2: Orientation of the gyration orbits of electrons and ions in tric force qE. Since the electric force is in opposite direc- a magnetic field. The guiding center motion is also shown. tions for electrons and ions, the resulting drift velocity, 61 ion Figure 5: Inhomogeneous mag- Figure 4: E B drift grad B × netic field. Relation between the of ions and electrons. B E curvature radius and the field gra- B electron dient in a force-free magnetic field R ( B B). c ∇ × k E B vE = × , (6) B2 The other inhomogeneity that results in a drift is the does not depend on the sign of the charge or the particles. It transverse gradient of the magnetic field strength. The parti- is also independent of the particle mass and therefore iden- cle orbit has a smaller radius of curvature on that part of its tical for ions and electrons. Hence, this drift leads to a net orbit located in the stronger magnetic field. This leads to a flow of the plasma, not to a current.
Recommended publications
  • Ion Cyclotron and Heavy Ion Effects on Reconnection in a Global Magnetotail R
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, A09206, doi:10.1029/2004JA010385, 2004 Ion cyclotron and heavy ion effects on reconnection in a global magnetotail R. M. Winglee Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA Received 12 January 2004; revised 21 May 2004; accepted 8 July 2004; published 22 September 2004. [1] Finite ion cyclotron effects play a significant role in determining the dynamics of the neutral sheet. The demagnetization of the ions facilitates reconnection and produces an electric field perpendicular to the direction of the tail currents. This in-plane electric field drives field-aligned currents and an out-of-plane (or core) magnetic field in conjunction with the generation of flux ropes. In addition to these electromagnetic effects, it is shown that ion cyclotron effects lead to the preferential convection of plasma from the dawnside to the duskside. This convection is consistent with results from single- particle tracking but differs from ideal MHD treatment where the flow occurs symmetrically around the Earth. A physical manifestation of these asymmetric particle trajectories is the wrapping of the field-aligned current between the region 1 currents and the region 2 and/or region 0 currents. In addition, localized density enhancements and depletions are seen in the tail where the local heavy ion density can be substantially elevated over ionospheric conditions. Because of the local density variations, reconnection across the tail is inhomogeneous. Reconnection is initiated postmidnight and then sweeps across to the dawn and dusk flanks within a few minutes. Because of this spatial variation, the ejection plasmoid is actually U-shaped and the subsequent flux rope formation is highly skewed.
    [Show full text]
  • Searches for Point-Like Sources of Astrophysical Neutrinos with the Icecube Neutrino Observatory
    Searches for Point-like Sources of Astrophysical Neutrinos with the IceCube Neutrino Observatory By Jacob Feintzeig Adissertationsubmittedinpartialfulfillmentof the requirements for the degree of Doctor of Philosophy (Physics) at the UNIVERSITY OF WISCONSIN–MADISON 2014 Date of final oral examination: August 22, 2014 The dissertation is approved by the following members of the Final Oral Committee: Amy Connolly, Assistant Professor, Physics John S Gallagher, Professor, Astronomy Francis Halzen, Professor, Physics Albrecht Karle, Professor, Physics Dan McCammon, Professor, Physics i ACKNOWLEDGMENTS Iamincrediblyfortunatetohavemanysupportivementorsandpeerswhomadethis work possible. I’d like to first thank my advisor Albrecht for giving me the opportunity to work on IceCube, for providing valuable guidance and advice throughout this project, and for giving me the independence to pursue ideas I found interesting. I’d like to thank Naoko for helping me troubleshoot analysis problems and brainstorm ideas when I was stuck, and providing advice from all issues large to small. Thanks to Chad for encouraging me to think in new ways and approach problems from di↵erent angles. I’d like to express my appreciation for Chris Wendt and Gary Hill for teaching me how to do statistics, dig into the details of the data, and complete a rigorous analysis. Thanks to John Kelley for helping me get to Pole and for teaching me how to do everything once we were there. Thanks to Dima and Juan Carlos for explaining the technical details of reconstruction and simulation in many times of need. Many thanks to Markus for our many valuable physics discussions. Ioweadebtofgratitudetothelargenumberofstudentsandpostdocswhohelpedme debug my code, brainstorm ideas, develop analyses, and o↵ered their support in a myriad of small, invisible ways (not to mention provided entertaining office banter).
    [Show full text]
  • Icecube Searches for Neutrinos from Dark Matter Annihilations in the Sun and Cosmic Accelerators
    UNIVERSITE´ DE GENEVE` FACULTE´ DES SCIENCES Section de physique Professeur Teresa Montaruli D´epartement de physique nucl´eaireet corpusculaire IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators. THESE` pr´esent´ee`ala Facult´edes sciences de l'Universit´ede Gen`eve pour obtenir le grade de Docteur `essciences, mention physique par M. Rameez de Kozhikode, Kerala (India) Th`eseN◦ 4923 GENEVE` 2016 i Declaration of Authorship I, Mohamed Rameez, declare that this thesis titled, 'IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators.' and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualifica- tion at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: 27 April 2016 ii UNIVERSITE´ DE GENEVE` Abstract Section de Physique D´epartement de physique nucl´eaireet corpusculaire Doctor of Philosophy IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators.
    [Show full text]
  • GZK Neutrino Search with the Icecube Neutrino Observatory Using New Cosmic Ray Background Rejection Methods
    GZK Neutrino Search with the IceCube Neutrino Observatory using New Cosmic Ray Background Rejection Methods THÈSE NO 5813 (2013) PRÉSENTÉE LE 28 JUIN 2013 À LA FACULTÉ DES SCIENCES DE BASE LABORATOIRE DE PHYSIQUE DES HAUTES ÉNERGIES 1 PROGRAMME DOCTORAL EN PHYSIQUE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Shirit COHEN acceptée sur proposition du jury: Prof. O. Schneider, président du jury Prof. M. Ribordy, directeur de thèse Dr P. North, rapporteur Prof. E. Resconi, rapporteur Prof. D. Ryckbosch, rapporteur Suisse 2013 Acknowledgements It has been a great privilege and pleasure to take part in the IceCube collaboration research work during these past years. The effort to solve challenging physics questions within an international working group together with collaboration meetings and work stay abroad had been the most rewarding during this thesis work. I thank my advisor Mathieu Ribordy for giving me the opportunity to join IceCube, for his strong physics understanding and sharp ideas during the research work, and for his support in finalising the analysis. The work would not have been possible without the day-to-day guidance of Levent Demiroers, and almost as important, his good company in the office. I am also grateful to Ronald Bruijn for his help and patience in the past year and friendly discussions aside from work. Arriving at the finishing line of this doctoral studies within our tiny IceCube group in EPFL is an achievement you have all helped to realise and I am grateful for it. This research work was developed within the EHE/Diffuse working group in IceCube with its collaborators in the US, Europe and Japan — and accordingly complicated phone meetings schedule.
    [Show full text]
  • [Insert Your Title Here]
    Laboratory Investigation of the Dynamics of Shear Flows in a Plasma Boundary Layer by Ami Marie DuBois A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 14, 2013 Copyright 2013 by Ami Marie DuBois Approved by Edward Thomas, Jr., Chair, Professor of Physics William Amatucci, Staff Scientist at Naval Research Laboratory Uwe Konopka, Professor of Physics David Maurer, Professor of Physics Abstract The laboratory experiments presented in this dissertation investigate a regime of instabilities that occur when a highly localized, radial electric field oriented perpendicular to a uniform background magnetic field gives rise to an azimuthal velocity shear profile at the boundary between two interpenetrating plasmas. This investigation is motivated by theoretical predictions which state that plasmas are unstable to transverse and parallel inhomogeneous sheared flows over a very broad frequency range. Shear driven instabilities are commonly observed in the near-Earth space environment when boundary layers, such as the magnetopause and the plasma sheet boundary layer, are compressed by intense solar storms. When the shear scale length is much less than the ion gyro- radius, but greater than the electron gyro-radius, the electrons are magnetized in the shear layer, but the ions are effectively un-magnetized. The resulting shear driven instability, the electron-ion hybrid instability, is investigated in a new interpenetrating plasma configuration in the Auburn Linear EXperiment for Instability Studied (ALEXIS) in the absence of a magnetic field aligned current. In order to truly understand the dynamics at magnetospheric boundary layers, the EIH instability is studied in the presence of a density gradient located at the boundary layer between two plasmas.
    [Show full text]
  • Problems for the Course F5170 – Introduction to Plasma Physics
    Problems for the Course F5170 { Introduction to Plasma Physics Jiˇr´ı Sperka,ˇ Jan Vor´aˇc,Lenka Zaj´ıˇckov´a Department of Physical Electronics Faculty of Science Masaryk University 2014 Contents 1 Introduction5 1.1 Theory...............................5 1.2 Problems.............................6 1.2.1 Derivation of the plasma frequency...........6 1.2.2 Plasma frequency and Debye length..........7 1.2.3 Debye-H¨uckel potential.................8 2 Motion of particles in electromagnetic fields9 2.1 Theory...............................9 2.2 Problems............................. 10 2.2.1 Magnetic mirror..................... 10 2.2.2 Magnetic mirror of a different construction...... 10 2.2.3 Electron in vacuum { three parts............ 11 2.2.4 E × B drift........................ 11 2.2.5 Relativistic cyclotron frequency............. 12 2.2.6 Relativistic particle in an uniform magnetic field... 12 2.2.7 Law of conservation of electric charge......... 12 2.2.8 Magnetostatic field.................... 12 2.2.9 Cyclotron frequency of electron............. 12 2.2.10 Cyclotron frequency of ionized hydrogen atom.... 13 2.2.11 Magnetic moment.................... 13 2.2.12 Magnetic moment 2................... 13 2.2.13 Lorentz force....................... 13 3 Elements of plasma kinetic theory 14 3.1 Theory............................... 14 3.2 Problems............................. 15 3.2.1 Uniform distribution function.............. 15 3.2.2 Linear distribution function............... 15 3.2.3 Quadratic distribution function............. 15 3.2.4 Sinusoidal distribution function............. 15 3.2.5 Boltzmann kinetic equation............... 15 1 CONTENTS 2 4 Average values and macroscopic variables 16 4.1 Theory............................... 16 4.2 Problems............................. 17 4.2.1 RMS speed........................ 17 4.2.2 Mean speed of sinusoidal distribution........
    [Show full text]
  • View Technical Report
    CH9700652 LRP 581/97 August 1997 Global approach to the spectral problem of MICROINSTABILITIES IN TOKAMAK PLASMAS USING A GYROKINETIC MODEL S. Brunner CRPP Centre de Recherches en Physique des Plasmas ECOLE POLYTECHNIQUE Association Euratom - Confederation Suisse FEDERALE DE LAUSANNE Centre de Recherches en Physique des Plasmas (CRPP) Association Euratom - Confederation Suisse Ecole Poly technique Federate de Lausanne PPB, CH-1015 Lausanne, Switzerland phone: +41 21 693 34 82 17 —fax +41 21 693 51 76 Centre de Recherches en Physique des Plasmas - Technologle de la Fusion (CRPP-TF) Association Euratom - Confederation Suisse Ecole Poly technique Federate de Lausanne CH-5232 Vllligen-PSI, Switzerland phone: +41 56 310 32 59 —fax +41 56 310 37 29 LRP 581/97 August 1997 Global approach to the spectral problem of MICROINSTABILITIES IN TOKAMAK PLASMAS USING A GYROKINET1C MODEL S. Brunner EPFL 1997 Abstract Ion temperature gradient (ITG) -related instabilities are studied in tokamak-like plas ­ mas with the help of a new global eigenvalue code. Ions are modeled in the frame of gyrokinetic theory so that finite Larmor radius effects of these particles are retained to all orders. Non-adiabatic trapped electron dynamics is taken into account through the bounce-averaged drift kinetic equation. Assuming electrostatic perturbations, the sys­ tem is closed with the quasineutrality relation. Practical methods are presented which make this global approach feasible. These include a non-standard wave decomposition compatible with the curved geometry as well as adapting an efficient root finding al­ gorithm for computing the unstable spectrum. These techniques are applied to a low pressure configuration given by a large aspect ratio torus with circular, concentric mag­ netic surfaces.
    [Show full text]
  • First in Situ Evidence of Electron Pitch Angle Scattering Due to Magnetic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery PUBLICATIONS Journal of Geophysical Research: Space Physics RESEARCH ARTICLE First in situ evidence of electron pitch angle scattering due 10.1002/2016JA022409 to magnetic field line curvature in the Ion diffusion region Key Points: Y. C. Zhang1,2,3,4, C. Shen5, A. Marchaudon3,4, Z. J. Rong2, B. Lavraud3,4, A. Fazakerley6, Z. Yao6, • First multispacecraft analysis of 6 7 5 1 magnetic field curvature in the ion B. Mihaljcic ,Y.Ji ,Y.H.Ma , and Z. X. Liu diffusion region 1 2 • Electron dynamics is analyzed as a State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China, Key function of magnetic field curvature Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, • Observational evidence for magnetic China, 3Institut de Recherche and Astrophysique et Planétologie, Université de Toulouse (UPS), Toulouse, France, 4Centre curvature-induced electron pitch National de la Recherche Scientifique, UMR 5277, Toulouse, France, 5Shenzhen Graduate School, Harbin Institute of angle scattering Technology, Shenzhen, China, 6Mullard Space Science Laboratory, University College London, London, UK, 7State Key Laboratory for Turbulence & Complex Systems, Peking University, Beijing, China Correspondence to: Y. C. Zhang, Abstract Theory predicts that the first adiabatic invariant of a charged particle may be violated in a region [email protected] of highly curved field lines, leading to significant pitch angle scattering for particles whose gyroradius are comparable to the radius of the magnetic field line curvature.
    [Show full text]
  • High-Resolution, High-Accuracy Plasma, Electric, and Magnetic Field Measurements for Discovery of Kinetic Plasma Structures and Processes in the Evolving Solar Wind
    High-resolution, high-accuracy plasma, electric, and magnetic field measurements for discovery of kinetic plasma structures and processes in the evolving solar wind J. J. Podesta, J. E. Borovsky, J. T. Steinberg, R. Skoug, J. Birn, S. P. Gary, S. R. Cranmer, G. Zank, G. Li, J. T Gosling, N. A. Schwadron, J. Giacalone, K. W. Ogilvie, D. A. Roberts, A. Szabo, J. A. Slavin, T. Chang, J. D. Richardson, R. P. Lin, J. Luhmann, P. J. Kellogg, C. T. Russell, L. Jian, C. W. Smith, A. Bhattacharjee, B. D. G. Chandran, O. Alexandrova, V. Pierrard, F. Sahraoui, M. L. Goldstein, M. Velli, S. D. Bale To discover and understand the mechanisms responsible for the heating and acceleration of the solar wind is an important goal of solar and space physics that has stimulated scientific study for many years. Although significant progress has occurred in the last few decades, to achieve this goal requires the ground truth provided by an advanced generation of in situ spacecraft measurements. To solve the mystery of solar wind heating and acceleration requires direct observational knowledge of the solar wind structures, plasma waves, and wave-particle interactions that play a dominant role in these processes. Since the relevant mechanisms operate at kinetic scales, it is clear that high accuracy, high cadence plasma and wave measurements are essential to pave the way for the science that will eventually solve this mystery. Progress toward a solution of this fundamental issue requires that these next generation measurements be performed in the inner heliosphere and at 1 AU in the coming decades.
    [Show full text]
  • Partially Ionized Plasmas in Astrophysics
    Space Sci Rev (2018) 214:58 https://doi.org/10.1007/s11214-018-0485-6 Partially Ionized Plasmas in Astrophysics José Luis Ballester1 · Igor Alexeev2 · Manuel Collados3 · Turlough Downes4 · Robert F. Pfaff5 · Holly Gilbert6 · Maxim Khodachenko7 · Elena Khomenko3 · Ildar F. Shaikhislamov8 · Roberto Soler1 · Enrique Vázquez-Semadeni9 · Teimuraz Zaqarashvili7,10 Received: 29 June 2017 / Accepted: 2 February 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract Partially ionized plasmas are found across the Universe in many different as- trophysical environments. They constitute an essential ingredient of the solar atmosphere, molecular clouds, planetary ionospheres and protoplanetary disks, among other environ- ments, and display a richness of physical effects which are not present in fully ionized plasmas. This review provides an overview of the physics of partially ionized plasmas, in- cluding recent advances in different astrophysical areas in which partial ionization plays a B J.L. Ballester [email protected] I. Alexeev [email protected] M. Collados [email protected] T. Downes [email protected] R.F. Pfaff [email protected] H. Gilbert [email protected] M. Khodachenko [email protected] E. Khomenko [email protected] I.F. Shaikhislamov [email protected] R. Soler [email protected] E. Vázquez-Semadeni [email protected] T. Zaqarashvili [email protected] 58 Page 2 of 149 J.L. Ballester et al. fundamental role. We outline outstanding observational and theoretical questions and dis- cuss possible directions for future progress. Keywords Plasmas · Magnetohydrodynamics · Sun · Molecular clouds · Ionospheres · Exoplanets 1 Introduction Plasma pervades the Universe at all scales, and the term plasma universe was coined by Hannes Alfvén to point out the important role played by plasmas across the universe (Alfven 1986).
    [Show full text]
  • Synchrotron Radiation
    Synchrotron Radiation The synchrotron radiation, the emission of very relativistic and ultrarelativistic electrons gyrating in a magnetic field, is the process which dominates much of high energy astrophysics. It was originally observed in early betatron experiments in which electrons were first accelerated to ultrarelativistic energies. This process is responsible for the radio emission from the Galaxy, from supernova remnants and extragalactic radio sources. It is also responsible for the non-thermal optical and X-ray emission observed in the Crab Nebula and possibly for the optical and X-ray continuum emission of quasars. The word non-thermal is used frequently in high energy astrophysics to describe the emission of high energy particles. This an unfortunate terminology since all emission mechanisms are ‘thermal’ in some sense. The word is conventionally taken to mean ‘continuum radiation from particles, the energy spectrum of which is not Maxwellian’. In practice, continuum emission is often referred to as ‘non-thermal’ if it cannot be described by the spectrum of thermal bremsstrahlung or black-body radiation. 1 Motion of an Electron in a Uniform, Static Magnetic field We begin by writing down the equation of motion for a particle of rest mass m0, charge ze and Lorentz factor γ = (1 − v2/c2)−1/2 in a uniform static magnetic field B. d (γm0v) = ze(v × B) (1) dt We recall that the left-hand side of this equation can be expanded as follows: d dv 3 (v · a) m0 (γv) = m0γ + m0γ v (2) dt dt c2 because the Lorentz factor γ should be written γ = (1 − v · v/c2)−1/2.
    [Show full text]
  • NRL: Plasma Formulary 5B
    Naval Research Laboratory Washington, DC 20375-5320 NRL/PU/6790--04-477 NRL Plasma Formulary Revised 2004 Approved for public release; distribution is unlimited. Form Approved Report Documentation Page OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 2004 N/A - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER NRL: Plasma Formulary 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Naval Research Laboratory Washington, DC 20375-5320 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17.
    [Show full text]