BMC Bioinformatics BioMed Central Research article Open Access Selective prediction of interaction sites in protein structures with THEMATICS Ying Wei1, Jaeju Ko1,2, Leonel F Murga1,3 and Mary Jo Ondrechen*1 Address: 1Department of Chemistry and Chemical Biology and Institute for Complex Scientific Software, Northeastern University, Boston, Massachusetts 02115 USA, 2NSF-ROA awardee. Department of Chemistry, Indiana University of Pennsylvania, 975 Oakland Avenue, Indiana, Pennsylvania 15705 USA and 3Rosenstiel Basic Medical Sciences Center, Brandeis University, Waltham, MA 02454 USA Email: Ying Wei -
[email protected]; Jaeju Ko -
[email protected]; Leonel F Murga -
[email protected]; Mary Jo Ondrechen* -
[email protected] * Corresponding author Published: 9 April 2007 Received: 1 November 2006 Accepted: 9 April 2007 BMC Bioinformatics 2007, 8:119 doi:10.1186/1471-2105-8-119 This article is available from: http://www.biomedcentral.com/1471-2105/8/119 © 2007 Wei et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Methods are now available for the prediction of interaction sites in protein 3D structures. While many of these methods report high success rates for site prediction, often these predictions are not very selective and have low precision. Precision in site prediction is addressed using Theoretical Microscopic Titration Curves (THEMATICS), a simple computational method for the identification of active sites in enzymes. Recall and precision are measured and compared with other methods for the prediction of catalytic sites.