Aerospace Engineering Publications Aerospace Engineering 2-23-2018 Turbulence Closure Models for Computational Fluid Dynamics Paul A. Durbin Iowa State University,
[email protected] Follow this and additional works at: https://lib.dr.iastate.edu/aere_pubs Part of the Aerodynamics and Fluid Mechanics Commons, and the Computational Engineering Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ aere_pubs/136. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Aerospace Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Aerospace Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact
[email protected]. Turbulence Closure Models for Computational Fluid Dynamics Abstract The formulation of analytical turbulence closure models for use in computational fluid mechanics is described. The ubjs ect of this chapter is the types of models that are used to predict the statistically averaged flow field – commonly known as Reynolds‐averaged Navier–Stokes equations (RANS) modeling. A variety of models are reviewed: these include two‐equation, eddy viscosity transport, and second moment closures. How they are formulated is not the main theme; it enters the discussion but the models are presented largely at an operational level. Several issues related to numerical implementation are discussed. Relative merits of the various formulations are commented on. Keywords turbulence modeling, RANS, k ‐epsilon model, Reynolds stress transport, second moment closure, turbulence prediction methods Disciplines Aerodynamics and Fluid Mechanics | Aerospace Engineering | Computational Engineering Comments This is a chapter from Durbin, Paul A.