Screening for Prediabetes and Type 2 Diabetes in Dental Offices

Total Page:16

File Type:pdf, Size:1020Kb

Screening for Prediabetes and Type 2 Diabetes in Dental Offices Journal of Public Health Dentistry . ISSN 0022-4006 Screening for prediabetes and type 2 diabetes in dental offices William H. Herman, MD, MPH1,2; George W. Taylor, DMD, MPH, DrPH3; Jed J. Jacobson, DDS, MS, MPH4; Ray Burke, MA1; Morton B. Brown, PhD5 1 Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA 2 Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA 3 School of Dentistry, University of Michigan, Ann Arbor, MI, USA 4 Delta Dental of Michigan, Ohio, and Indiana, Lansing, MI, USA 5 Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA Keywords Abstract screening; dental office; prediabetes; diabetes; periodontal disease; epidemiology. Objectives: Most Americans see dentists at least once a year. Chair-side screening and referral may improve diagnosis of prediabetes and diabetes. In this study, we Correspondence developed a multivariate model to screen for dysglycemia (prediabetes and diabetes Dr. William H. Herman, University of Michigan, defined as HbA1c ≥5.7 percent) using information readily available to dentists and 1000 Wall Street, Room 6108 / SPC 5714, Ann Arbor, MI 48105-1912. Tel.: 734-936-8279; assessed the prevalence of dysglycemia in general dental practices. Fax: 734-647-2307; e-mail: Methods: We recruited 1,033 adults ≥30 years of age without histories of diabetes [email protected]. William H. Herman from 13 general dental practices.A sample of 181 participants selected on the basis of and Ray Burke are with the Department random capillary glucose levels and periodontal status underwent definitive diag- of Internal Medicine, University of Michigan. nostic testing with hemoglobin A1c. Logistic models were fit to identify risk factors William H. Herman is with the Department for dysglycemia, and sample weights were applied to estimate the prevalence of of Epidemiology, University of Michigan. dysglycemia in the population ≥30 years of age. George W. Taylor is with the School of Dentistry, University of Michigan. Jed J. Results: Individuals at high risk for dysglycemia could be identified using a ques- Jacobson is with the Delta Dental of Michigan, tionnaire that assessed sex, history of hypertension, history of dyslipidemia, history Ohio, and Indiana. Morton B. Brown is with of lost teeth, and either self-reported body mass index ≥35 kg/m2 (severe obesity) or the Department of Biostatistics, University of random capillary glucose ≥110 mg/dl. We estimate that 30 percent of patients ≥30 Michigan. years of age seen in these general dental practices had dysglycemia. Conclusions: There is a substantial burden of dysglycemia in patients seen in general Received: 5/29/2014; accepted: 12/10/2014. dental practices. Simple chair-side screening for dysglycemia that includes or does doi: 10.1111/jphd.12082 not include fingerstick random capillary glucose testing can be used to rapidly iden- tify high-risk patients. Journal of Public Health Dentistry 75 (2015) 175–182 Practical implications: Further studies are needed to demonstrate the acceptability, feasibility, effectiveness, and cost-effectiveness of chair-side screening. Introduction Approximately 70 percent of Americans see dentists at least once a year for check-ups and cleanings (4). The concept of Diabetes mellitus affects 25.8 million Americans or 8.3 prevention is fundamental to dentistry, and many dental percent of the population (1). Another 79 million Americans healthcare professionals have built relationships with their are estimated to have prediabetes (1), the vast majority of patients focused on prevention. The American Dental Asso- whom are undiagnosed. The US Preventive Services Task ciation has recognized that its members may wish to take Force has recommended screening for type 2 diabetes in advantage of this relationship to monitor cardiovascular risk asymptomatic adults with sustained blood pressure >135/ factors (5). There may also be an opportunity to screen for 80 mmHg (2). The American Diabetes Association has rec- prediabetes and diabetes during routine dental checkups. ommended screening for diabetes every 3 years in persons Screening for a disease is appropriate if the disease is ≥45 years of age and in those <45 years of age with body mass serious; its natural history is understood; it is detectable in its index (BMI) ≥25 kg/m2 and one or more risk factors for preclinical stage; the screening test is inexpensive, safe, diabetes (3). acceptable, and valid; early treatment of the disease is more © 2015 The Authors. Journal of Public Health Dentistry published by Wiley Periodicals, Inc. on behalf of American Association of Public Health Dentistry. 175 This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. Screening for prediabetes and type 2 diabetes W.H. Herman et al. effective than late treatment; and screening programs ethnicity, education, income, self-reported height and improve outcomes (6). Type 2 diabetes meets many of these weight, self-reported physical activity, history of hyperten- criteria (7). Screening for diabetes also provides an opportu- sion and hypertension treatment, history of dyslipidemia and nity to identify people with prediabetes who are at increased lipid treatment, history of cigarette smoking, history of car- risk for both type 2 diabetes and cardiovascular disease. diovascular disease, history of gestational diabetes, family Randomized controlled clinical trials have conclusively dem- history of diabetes, medical insurance coverage, and access to onstrated that lifestyle and medication interventions are medical care. The questionnaire also assessed symptoms and effective in delaying or preventing the development of type 2 signs of periodontal disease including teeth that hurt, painful diabetes in high-risk individuals with prediabetes (8-12). The gums, teeth that became loose by themselves without injury, failure to translate proven-effective interventions for diabetes and teeth that were lost from the upper or lower jaw other prevention into widespread clinical practice is due in large than wisdom teeth or teeth extracted to get braces. For pur- part to the difficulty in identifying high-risk individuals. To poses of this analysis, answers to the question about lost teeth help address this problem, investigators have developed and were dichotomized as none versus one or more teeth. There- validated multivariate risk factor models (13-18) and imple- after, the research assistant performed a random capillary mented them in a variety of settings including primary care. glucose measurement from each participant’s finger with a In an analysis of data from the Third National Health and portable blood glucose testing system (FreeStyle Lite blood Nutrition Examination Survey (NHANES), Eklund et al. glucose meters and test strips, Abbott Diabetes Care Inc., described prediabetes and diabetes among patients who Alameda, CA, USA). We have previously assessed the perfor- reported that they had at least one dental visit during the past mance of random capillary glucose as a screening test and year (Eklund, unpublished observations). At least 10 percent found a cutpoint of ≥110 mg/dl to be very sensitive in identi- of patients ≥50 years of age had diabetes and approximately fying people with previously undiagnosed diabetes regardless 40 percent had impaired fasting glucose. Perhaps even more of age and time since last food or drink (19). The hygienist or startling and troubling was the fact that one-third to one-half dentist then performed a brief periodontal evaluation based of those with diabetes and more than 90 percent of those with on their usual office practice and indicated the absence or impaired fasting glucose reported that they had never been presence of periodontal disease and its severity. Periodontal told by a doctor that they had diabetes or prediabetes. As a status was initially classified into one of five categories result, they remained undiagnosed and untreated. This may (Appendix 1). For the purpose of this analysis, periodontal ultimately increase the risk of diabetes and its complications status was dichotomized as none or gingivitis only versus and comorbidities, negatively impact oral health, and pre- early/slight, moderate, or advanced/severe periodontitis. clude appropriate dental care. Because we wished to rigorously evaluate the sensitivity The purpose of this study was to develop and validate a tool and specificity of the newly developed screening tool, we per- to screen for prediabetes and previously undiagnosed diabe- formed definitive diagnostic tests on a systematic sample of tes in dental practices using information readily available to the entire study population. All respondents at higher risk for dental practitioners and to assess the prevalence of prediabe- previously undiagnosed diabetes (random capillary glucose tes and previously undiagnosed diabetes in general dental ≥110 mg/dl) and a 50 percent random sample of those at practices. Because we wanted to develop a tool specifically for lower risk for undiagnosed diabetes (random capillary dental practitioners, we assessed essentially all of the risk glucose <110 mg/dl) and all patients with any degree of factors previously associated with dysglycemia as well as hygienist- or dentist-reported periodontitis were invited to symptoms and signs of periodontal disease
Recommended publications
  • Metformin Should Not Be Used to Treat Prediabetes
    Diabetes Care Volume 43, September 2020 1983 Metformin Should Not Be Used to Mayer B. Davidson Treat Prediabetes – Diabetes Care 2020;43:1983 1987 | https://doi.org/10.2337/dc19-2221 PERSPECTIVES IN CARE Based on the results of the Diabetes Prevention Program Outcomes Study (DPPOS), in which metformin significantly decreased the development of diabetes in individuals with baseline fasting plasma glucose (FPG) concentrations of 110–125vs. 100–109 mg/dL (6.1–6.9 vs. 5.6–6.0 mmol/L) and A1C levels 6.0–6.4% (42–46 mmol/ mol) vs. <6.0% and in women with a history of gestational diabetes mellitus, it has been suggested that metformin should be used to treat people with prediabetes. Since the association between prediabetes and cardiovascular disease is due to the associated nonglycemic risk factors in people with prediabetes, not to the slightly increased glycemia, the only reason to treat with metformin is to delay or prevent the development of diabetes. There are three reasons not to do so. First, approximately two-thirds of people with prediabetes do not develop diabetes, even after many years. Second, approximately one-third of people with prediabetes return to normal glucose regulation. Third, people who meet the glycemic criteria for prediabetes are not at risk for the microvascular complications of diabetes and thus metformin treatment will not affect this important outcome. Why put people who are not at risk for the microvascular complications of diabetes on a drug (possibly for the rest of their lives) that has no immediate advantage except to lower subdiabetes glycemia to even lower levels? Rather, individuals at the highest risk for developing diabetesdi.e., those with FPG concentrations of 110–125 mg/dL (6.1– 6.9 mmol/L) or A1C levels of 6.0–6.4% (42–46 mmol/mol) or women with a history of gestational diabetes mellitusdshould be followed closely and metformin im- mediately introduced only when they are diagnosed with diabetes.
    [Show full text]
  • Dysglycemia and the Importance of Nutrition Therapy Rachel A
    Hospital Dysglycemia and the Importance of Nutrition Therapy Rachel A. Johnson, RD Scientific and Medical Affairs, Abbott Nutrition Columbus, Ohio, USA INTRODUCTION As the global diabetes epidemic continues to grow, so does the number of hospitalized patients with diabetes and hyperglycemia. Dysglycemia, in the form of hyperglycemia, hypoglycemia and glycemic variability, is common and associated with poor clinical outcomes in hospitalized patients. However, observational and randomized controlled studies demonstrate that better glycemic control improves outcomes, including lower rates of hospital complications. The development of effective strategies, including nutrition strategies, is imperative for effective glycemic management in the hospitalized patient. HOSPITAL DYSGLYCEMIA: A MARKER FOR QUALITY OF CARE Dysglycemia, which can be an indicator of poor quality of care, increases the risk for adverse outcomes in surgical patients and common clinical conditions including stroke and critical illness. For example, acute hyperglycemia predicts increased risk of in-hospital mortality after ischemic stroke and increases the risk of poor functional recovery.1 In critically ill patients, increased glycemic variability is an independent risk factor for mortality, increasing the risk by 2- to 5-fold.2,3 In surgical patients, perioperative hyperglycemia increases the incidence of systemic blood infections, surgical site infections, acute renal failure, and postoperative mortality.4-7 Increased Acute Mortality Renal Surgical Site Failure Infection
    [Show full text]
  • Philippine Practice Guidelines on the Diagnosis and Management of Diabetes Mellitus
    Fall 08 Philippine Diabetes Association, Inc. Philippine Society of Endocrinology and Metabolism Institute for Studies on Diabetes Foundation, Inc. Philippine Center for Diabetes Education Foundation, Inc. UNITE FOR DIABETES PHILIPPINES Philippine Practice Guidelines for the Diagnosis and Management of Diabetes: Part 1- Screening & Diagnosis Philippine Practice Guidelines for the Management of Diabetes Part 1: Screening and Diagnosis Part 1- Screening & Diagnosis Document Title] Unite for Diabetes Philippines 2011 2 Philippine Practice Guidelines on the Diagnosis and Management of Diabetes Mellitus A Project of UNITE FOR Diabetes Philippines: A Coalition of Organizations Caring for Individuals with Diabetes Mellitus Diabetes Philippines (Formerly Philippine Diabetes Association) Institute for Studies on Diabetes Foundation, Inc (ISDFI) Philippine Center for Diabetes Education Foundation (PCDEF) Philippine Society of Endocrinology and Metabolism (PSEM) Technical Review Committee Members: Dr. Cecilia Jimeno – Head Dr. Lorna Abad Dr. Aimee Andag-Silva Dr. Elaine Cunanan Dr. Richard Elwynn Fernando Dr. Mia Fojas Dr. Iris Thiele Isip-Tan Dr. Leilani Mercado-Asis Administrative Panel: Dr. Maria Honolina Gomez (PCDEF) Dr. Gabriel V. Jasul, Jr (PSEM) Dr. Leorino M. Sobrepeña (ISDF) Dr. Tommy Ty Willing (Diabetes Philippines) (Consensus) Panel of Experts: Associations/Agencies Representative 1. Dr. Susan Yu-Gan 2. Sanirose S. Orbeta, MSRD, FADA Diabetes Philippines 3. Dr. Joy C. Fontanilla 3 Associations/Agencies Representative 4. Dr. Jose Carlos Miranda Diabetes Center (Philippine Center for 5. Dr. Jimmy Aragon Diabetes Education Foundation) 6. Dr. Augusto D. Litonjua 7. Dr. Carolyn Narvacan-Montano Institute for Studies on Diabetes Foundation, 8. Dr. Grace K. Delos Santos Inc (ISDFI) 9. Dr. Rima Tan 10. Dr. Ernesto Ang Philippine Society of Endocrinology and 11.
    [Show full text]
  • The Dysglycemia Diet
    The Dysglycemia Diet To more fully understand why we have designed this program, it is helpful to know a little about the biochemistry of blood sugar. Blood sugar, or serum glucose, is often measured with routine blood work at the doctor’s office. Glucose is the basic fuel all cells in your body use to make energy. Although it is measured in the blood, glucose can only be put to work and transformed into energy once it is in the cells, not when it is circulating in the bloodstream. It might be helpful to consider the bloodstream as the highway, and the cells as the factory. Glucose is the raw material that must be transported along the highway to the factory to be put to use. In an optimal state, the body maintains the blood glucose level in a fairly narrow range. The range is neither too low (which is called hypoglycemia), nor too high (called hyperglycemia). Stability of blood sugar is important, because imbalances, particularly elevated levels, can cause serious health problems. Chronically elevated blood glucose levels result in the development of diabetes, which can lead to severe complications such as blindness, kidney failure, and heart disease. To remain healthy, the body does all it can to maintain blood sugar levels within this normal optimal range. It achieves this stability through the secretion of a hormone called insulin. Insulin is the vehicle that allows glucose to be transported from the blood stream into the cells. A complete inability to secrete insulin, which occurs in juvenile onset diabetes, drastically increases glucose levels in the bloodstream.
    [Show full text]
  • Increased Frequency of Diabetes and Other Forms of Dysglycemia in The
    COMPARE AND PCB-RISK PROJECT: INTEGRATED RISK ASSESSMENT OF PCBS, THEIR METABOLITES AND HALOGENATED FLAME RETARDANTS Increased frequency of diabetes and other forms of dysglycemia in the population of specific areas of eastern Slovakia chronically exposed to contamination with polychlorinated biphenyls (PCB). Zofia Radikova1, Juraj Koska1, Lucia Ksinantova1, Richard Imrich1, Anton Kocan2, Jan Petrik2, Miroslava Huckova1, Ladislava Wsolova2, Pavel Langer1, Tomas Trnovec2, Elena Sebokova1, Iwar Klimes1 ''Institute of Experimental Endocrinology, SAS, Bratislava, Slovakia 2Research Base of the Slovak Health University - IPCM, Bratislava, Slovakia Introduction Some studies suggest that exposure to organochlorine pollutants may affect glucose metabolism and insulin secretion and action 1-5. Considerable pollution of water, soil and food chain in Eastern Slovakia was caused by a chemical factory, which was manufacturing PCBs in 1959-1985. The aim of the present preliminary evaluation of data obtained within the EC project PCBRISK was to search for further interrelations between long-term organochlorine pollution and disturbances in glucose homeostasis in large cohorts of population from three districts of Eastern Slovakia. Materials and Methods Population: a total of 2050 adults, 835 males (44.9 ± 0.4 years, BMI = 27.4 ± 0.1 kg/m2) and 1215 females (44.7 ± 0.3 years, BMI = 26.6 ± 0.1 kg/m2) from three districts of Eastern Slovakia were examined. Some data were not obtained from negligible number of subjects due to technical reasons. Baseline samples and oral glucose tolerance test: Fasting baseline blood samples were obtained from all 2050 participating subjects. A standard oral glucose tolerance test (75g glucose) was performed in 1222 willing subjects without previous evidence of diabetes or other dysglycemia.
    [Show full text]
  • Pancreatogenic Type 3C Diabetes: Underestimated, Underappreciated and Poorly Managed
    NUTRITION ISSUES IN GASTROENTEROLOGY, SERIES #163 NUTRITION ISSUES IN GASTROENTEROLOGY, SERIES #163 Carol Rees Parrish, M.S., R.D., Series Editor Pancreatogenic Type 3c Diabetes: Underestimated, Underappreciated and Poorly Managed Sinead N. Duggan Kevin C. Conlon Type 3c diabetes, also known as pancreatogenic diabetes, refers to diabetes resulting from pancreatic disease, including pancreatitis, cystic fibrosis and pancreatic cancer. It is difficult to diagnose, and for many, management is challenging due to erratic swings from hypoglycemia to hyperglycemia caused by metabolic abnormalities due to pancreatic tissue damage. This review aims to describe the disease along with its characteristics, diagnosis, complications, and management. CLINICAL CASE 1 42 year old male with an eight-year history regarding adequate dietary intake, prescribed oral of alcohol-induced chronic pancreatitis was nutritional supplements, and counselled on adequate Aadmitted from the ER. His current weight was and appropriate usage of PERT. Blood work revealed 61Kg as opposed to his usual weight of 67Kg; his low levels of serum vitamins (25 OHD, vitamin E and appearance was cachectic. He reported abdominal pain, vitamin A), normal fasting glucose and HbA1c. He intermittent diarrhea/steatorrhea along with periods of was discharged after 3 days once he was established constipation, cramping, flatulence and poor appetite. He on adequate oral diet, micronutrient supplementation, was not compliant with prescribed pancreatic enzyme PERT, and his pain medication had been adjusted. He replacement therapy (PERT), was still abusing alcohol, was readmitted three weeks later with dehydration, and was a heavy smoker for many years. He took fatigue, excess thirst and blurred vision. Fasting glucose opiates for relief of chronic, constant abdominal pain.
    [Show full text]
  • Dysglycemia and Dyslipidemia Models in Nonhuman Primates:Part
    abetes & Di M f e o t a l b a o Wang et al., J Diabetes Metab 2015, S13 n l r i s u m o DOI: 10.4172/2155-6156.S13-010 J Journal of Diabetes and Metabolism ISSN: 2155-6156 Research Article Open Access Dysglycemia and Dyslipidemia Models in Nonhuman Primates: Part I. Model of Naturally Occurring Diabetes Xiaoli Wang, Bingdi Wang, Guofeng Sun, Jing Wu, Yongqiang Liu, Yixin (Jim) Wang and Yong-Fu Xiao* Cardiovascular and Metabolic Disease Research, Crown Bioscience, Inc., 6 Beijing West Road, Taicang Economic Development Area, Taicang, Jiangsu Province, China Abstract Insulin-resistant diabetes (Type 2 diabetes mellitus, T2DM) is one of the main comorbidities of obesity and is the most common form of diabetes. T2DM and obesity dynamically influence each other and often escalate patients’ other health issues. Cardiovascular, renal and other health consequences of obesity and diabetes have been studied for several decades. However, the underlying precise mechanisms and interactions of obesity and insulin-resistant diabetes have yet to be elucidated further. It has been recognized that sustained greater energy intake than expenditure is the main cause of obesity that can potentially lead to insulin resistance and diabetes due to excessive fat accumulation. To better understand the pathophysiology of human obesity and diabetes, nonhuman primate (NHP) models have been used for research to delineate molecular and cellular mechanisms because of the similarity of the metabolic diseases between NHP and humans. Also, NHP models have been well used for testing new novel therapies, which provides critical pre-clinic information for drug discovery.
    [Show full text]
  • Do We Need to Treat Impaired Glucose Tolerance and Impaired Fasting Glucose?
    International Journal of Diabetes Mellitus 1 (2009) 22–25 Contents lists available at ScienceDirect International Journal of Diabetes Mellitus journal homepage: ees.elsevier.com/locate/ijdm Review Approach to dysglycemia: Do we need to treat impaired glucose tolerance and impaired fasting glucose? Mousa A. Abujbara, Kamel M. Ajlouni * National Center for Diabetes, Endocrinology and Genetics, P.O. Box 13165 Amman 11942, Jordan article info abstract Article history: Impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) are not only a surrogate for the state Received 7 October 2008 of insulin resistance but are also associated with the microvascular and macrovascular complications tra- Accepted 7 November 2008 ditionally linked to diabetes. They predict an increased risk for death and morbidity due to cardiovascular disease. There is growing evidence that early detection of this state of ‘‘pre-diabetes” enables us to limit these recognized complications and perhaps to halt the progression to diabetes. For all pre-diabetes patients’ life style modifications, emphasizing modest weight loss & moderate physical activity are strongly rec- ommended. Pharmacological intervention may also be necessary. Many studies have shown several drugs, both antidiabetic and nonhypoglycemic agents to be useful. If pharmacological treatment is required, Metformin is considered the first choice because of its safety, tolerability, efficacy and low cost. Ó 2009 International Journal of Diabetes Mellitus. Published by Elsevier Ltd. All rights reserved. 1. Introduction Between 1997 and 2006, eight major clinical trials examined whether lifestyle or pharmacologic interventions would prevent Diabetes and its complications are a growing concern world- or delay the development of diabetes in populations with IFG wide.
    [Show full text]
  • Undetected Dysglycemia an Important Risk Factor For
    Diabetes Care 1 Anna Norhammar,1,2 Barbro Kjellstrom,¨ 1 Undetected Dysglycemia an Natalie Habib,1 Anders Gustafsson,3 Bjorn¨ Klinge,3,4 Ake˚ Nygren,5 Per Nasman,¨ 6 Important Risk Factor for Two Elisabet Svenungsson,1 and Lars Ryden´ 1 Common Diseases Myocardial Infarction and Periodontitis: A Report From the PAROKRANK Study https://doi.org/10.2337/dc19-0018 OBJECTIVE Information on the relationship among dysglycemia (prediabetes or diabetes), myocardial infarction (MI), and periodontitis (PD) is limited. This study tests the hypothesis that undetected dysglycemia is associated with both conditions. RESEARCH DESIGN AND METHODS The PAROKRANK (Periodontitis and Its Relation to Coronary Artery Disease) study included 805 patients with a first MI and 805 matched control subjects. All participants without diabetes (91%) were examined with an oral glucose tolerance CARDIOVASCULAR AND METABOLIC RISK test. Abnormal glucose tolerance ([AGT] = impaired glucose tolerance or diabetes) was categorized according to the World Health Organization). Periodontal status 1Department of Medicine K2, Karolinska Institu- was categorized from dental X-rays as healthy (‡80% remaining alveolar bone tet, Stockholm, Sweden height), moderate (79–66%), or severe (<66%) PD. Odds ratios (ORs) and 95% CIs 2Capio St. Gorans¨ hospital, Stockholm, Sweden 3 were calculated by logistic regression, and were adjusted for age, sex, smoking, Department of Dental Medicine, Karolinska In- stitutet, Stockholm, Sweden education, marital status, and explored associated risks of dysglycemia to PD and 4Faculty of Odontology, Department of Periodon- MI, respectively. tology, Malmo¨ University, Malmo,¨ Sweden 5Department of Clinical Sciences Danderyds Hos- RESULTS pital, Karolinska Institutet, Stockholm, Sweden 6 AGT was more common in patients than in control subjects (32% vs.
    [Show full text]
  • Impact of Insulin and Metformin Versus Metformin Alone on Β-Cell
    Diabetes Care Volume 41, August 2018 1717 Impact of Insulin and Metformin The RISE Consortium* Versus Metformin Alone on b-Cell Function in Youth With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes Diabetes Care 2018;41:1717–1725 | https://doi.org/10.2337/dc18-0787 OBJECTIVE Pediatric type 2 diabetes prevalence is increasing, with b-cell dysfunction key in its pathogenesis. The RISE Pediatric Medication Study compared two approachesd glargine followed by metformin and metformin alonedin preserving or improving b-cell function in youth with impaired glucose tolerance (IGT) or recently diagnosed type 2 diabetes during and after therapy withdrawal. RESEARCH DESIGN AND METHODS Ninety-one pubertal, overweight/obese 10–19-year-old youth with IGT (60%) PATHOPHYSIOLOGY/COMPLICATIONS or type 2 diabetes of <6 months duration (40%) were randomized to either 3 months of insulin glargine with a target glucose of 4.4–5.0 mmol/L followed by 9 months of metformin or to 12 months of metformin alone. b-Cell function (insulin sensitivity paired with b-cell responses) was assessed by hyperglycemic clamp at baseline, 12 months (on treatment), and 15 months (3 months off treatment). RESULTS No significant differences were observed between treatment groups at baseline, RISE Coordinating Center, Rockville, MD 12 months, or 15 months in b-cell function, BMI percentile, HbA1c, fasting glucose, Corresponding author: Sharon L. Edelstein, rise@ or oral glucose tolerance test 2-h glucose results. In both treatment groups, clamp- bsc.gwu.edu. measured b-cell function was significantly lower at 12 and 15 months versus Received 10 April 2018 and accepted 13 May 2018.
    [Show full text]
  • Basal Glucose Can Be Controlled, but the Prandial Problem Persistsdit's
    Diabetes Care Volume 40, March 2017 291 Basal Glucose Can Be Controlled, Matthew C. Riddle but the Prandial Problem PersistsdIt’stheNextTarget! PERSPECTIVES IN CARE Diabetes Care 2017;40:291–300 | DOI: 10.2337/dc16-2380 Both basal and postprandial elevations contribute to the hyperglycemic exposure of diabetes, but current therapies are mainly effective in controlling the basal compo- nent. Inability to control postprandial hyperglycemia limits success in maintaining overall glycemic control beyond the first 5 to 10 years after diagnosis, and it is also related to the weight gain that is common during insulin therapy. The “prandial problem”dcomprising abnormalities of glucose and other metabolites, weight gain, and risk of hypoglycemiaddeserves more attention. Several approaches to prandial abnormalities have recently been studied, but the patient populations for which they are best suited and the best ways of using them remain incompletely defined. Encouragingly, several proof-of-concept studies suggest that short-acting glucagon- like peptide 1 agonists or the amylin agonist pramlintide can be very effective in controlling postprandial hyperglycemia in type 2 diabetes in specific settings. This article reviews these topics and proposes that a greater proportion of available resources be directed to basic and clinical research on the prandial problem. Widespread self-testing of blood glucose and, more recently, continuous glucose mon- itoring (CGM) have drawn attention to the daily patterns of blood glucose in both type 1 and type 2 diabetes. Seeing these patterns has allowed separate consideration of fasting (basal) hyperglycemia and after-meal (postprandial) increments of glucose above basal levels. In entirely healthy individuals, fasting plasma glucose is rarely .100 mg/dL (5.5 mmol/L).
    [Show full text]
  • Efficacy of Primary Prevention Interventions When Fasting And
    Clinical Care/Education/Nutrition/Psychosocial Research ORIGINAL ARTICLE Efficacy of Primary Prevention Interventions When Fasting and Postglucose Dysglycemia Coexist Analysis of the Indian Diabetes Prevention Programmes (IDPP-1 and IDPP-2) AMBADY RAMACHANDRAN, MD ANANTH SAMITH SHETTY, MBBS, MDRC done among subjects with IGT in differ- NANDITHA ARUN, MD CHAMUKUTTAN SNEHALATHA, DSC ent ethnic populations (9–14). Among these, only the Diabetes Reduction As- sessment with Ramipril and Rosiglitazone OBJECTIVE — Impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) have Medication (DREAM) trial (12) recruited different pathophysiological abnormalities, and their combination may influence the effective- subjects with either isolated IFG (iIFG) or ness of the primary prevention tools. The hypothesis was tested in this analysis, which was done isolated IGT (iIGT) or both. Rosiglitazone in a pooled sample of two Indian Diabetes Prevention Programmes (IDPP-1 and IDPP-2). was found to be a potent agent in prevent- ing diabetes in this trial (12). The Diabe- RESEARCH DESIGN AND METHODS — Researchers analyzed and followed up on tes Prevention Programme (DPP) (9) the details of 845 of the 869 IGT subjects in the two studies for 3 years. Incidence of diabetes and recruited subjects with a fasting glucose reversal to normoglycemia (normal glucose tolerance [NGT]) were assessed in group 1 with baseline isolated IGT (iIGT) (n ϭ 667) and in group 2 with IGT ϩ IFG (n ϭ 178). The proportion in the range of 5.3–6.9 mmol/l (95–125 developing diabetes in the groups were analyzed in the control arm with standard advice mg/dl) and 2-h postglucose of 7.8–11 (IDPP-1) (n ϭ 125), lifestyle modification (LSM) (297 from both), metformin (n ϭ 125, IDPP-1), mmol/l (140–199 mg/dl) and nearly one- and LSM ϩ metformin (n ϭ 121, IDPP-1) and LSM ϩ pioglitazone (n ϭ 298, IDPP-2).
    [Show full text]