B a N I S T E R I A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lehman Caves Management Plan
National Park Service U.S. Department of the Interior Great Basin National Park Lehman Caves Management Plan June 2019 ON THE COVER Photograph of visitors on tour of Lehman Caves NPS Photo ON THIS PAGE Photograph of cave shields, Grand Palace, Lehman Caves NPS Photo Shields in the Grand Palace, Lehman Caves. Lehman Caves Management Plan Great Basin National Park Baker, Nevada June 2019 Approved by: James Woolsey, Superintendent Date Executive Summary The Lehman Caves Management Plan (LCMP) guides management for Lehman Caves, located within Great Basin National Park (GRBA). The primary goal of the Lehman Caves Management Plan is to manage the cave in a manner that will preserve and protect cave resources and processes while allowing for respectful recreation and scientific use. More specifically, the intent of this plan is to manage Lehman Caves to maintain its geological, scenic, educational, cultural, biological, hydrological, paleontological, and recreational resources in accordance with applicable laws, regulations, and current guidelines such as the Federal Cave Resource Protection Act and National Park Service Management Policies. Section 1.0 provides an introduction and background to the park and pertinent laws and regulations. Section 2.0 goes into detail of the natural and cultural history of Lehman Caves. This history includes how infrastructure was built up in the cave to allow visitors to enter and tour, as well as visitation numbers from the 1920s to present. Section 3.0 states the management direction and objectives for Lehman Caves. Section 4.0 covers how the Management Plan will meet each of the objectives in Section 3.0. -
Eucinetidae (Coleoptera) of the Maritime Provinces of Canada
J. Acad. Entomol. Soc. 6: 16-21 (2010) Eucinetidae (Coleoptera) of the Maritime Provinces of Canada Christopher G. Majka ABSTRACT Four species of Eucinetidae (plate-thigh beetles) are recorded for the Maritime Provinces of Canada. Eucinetus haemorrhoidalis is newly recorded in Prince Edward Island, the first record of this family in the province; Eucinetus morio LeConte is newly recorded in New Brunswick; and Nycteus punctulatus (LeConte) is newly recorded in Nova Scotia, and in the Maritime Provinces as a whole. A key to species is provided, as are colour habitus photographs of all the species found in the region. The composition of the eucinetid fauna of the region, and its place within the saproxylic beetle fauna, are briefly discussed. RÉSUMÉ Quatre espèces d’Eucinetidae ont été signalées dans les provinces Maritimes du Canada. L’Eucinetus haemorrhoidalis est une nouvelle espèce relevée sur l’Île-du-Prince-Édouard, la première mention de cette famille dans la province; l’Eucinetus morio LeConte est une nouvelle espèce signalée au Nouveau- Brunswick; le Nycteus punctulatus (LeConte) est une nouvelle espèce signalée en Nouvelle-Écosse ainsi que dans l’ensemble des Maritimes. Une clé des espèces ainsi que des photographies en couleurs de l’habitus de toutes les espèces présentes dans la région sont présentées. La composition de la faune eucinétidée de la région et sa place parmi la faune de coléoptères saproxyliques sont brièvement examinées. INTRODUCTION The Eucinetidae (plate-thigh beetles) are a family in the superfamily Scirtoidea. The common name refers to one of the distinctive features of the family; greatly expanded metacoxal plates that cover most of the first visible abdominal segment, beneath which the hind legs can be retracted. -
Forest Disturbance and Arthropods: Small‐Scale Canopy Gaps Drive
Forest disturbance and arthropods: Small-scale canopy gaps drive invertebrate community structure and composition 1, 2,3 4 1,5 KAYLA I. PERRY , KIMBERLY F. WALLIN, JOHN W. WENZEL, AND DANIEL A. HERMS 1Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691 USA 2Rubenstein School of Environment and Natural Resources, University of Vermont, 312H Aiken Center, Burlington, Vermont 05405 USA 3USDA Forest Service, Northern Research Station, 312A, Aiken, Burlington, Vermont 05405 USA 4Powdermill Nature Reserve, Carnegie Museum of Natural History, 1847 PA-381, Rector, Pennsylvania 15677 USA 5The Davey Tree Expert Company, 1500 Mantua Street, Kent, Ohio 44240 USA Citation: Perry, K. I., K. F. Wallin, J. W. Wenzel, and D. A. Herms. 2018. Forest disturbance and arthropods: Small-scale canopy gaps drive invertebrate community structure and composition. Ecosphere 9(10):e02463. 10.1002/ecs2.2463 Abstract. In forest ecosystems, disturbances that cause tree mortality create canopy gaps, increase growth of understory vegetation, and alter the abiotic environment. These impacts may have interacting effects on populations of ground-dwelling invertebrates that regulate ecological processes such as decom- position and nutrient cycling. A manipulative experiment was designed to decouple effects of simultane- ous disturbances to the forest canopy and ground-level vegetation to understand their individual and combined impacts on ground-dwelling invertebrate communities. We quantified invertebrate abundance, richness, diversity, and community composition via pitfall traps in response to a factorial combination of two disturbance treatments: canopy gap formation via girdling and understory vegetation removal. For- mation of gaps was the primary driver of changes in invertebrate community structure, increasing activity- abundance and taxonomic richness, while understory removal had smaller effects. -
Coleoptera: Carabidae) Assemblages in a North American Sub-Boreal Forest
Forest Ecology and Management 256 (2008) 1104–1123 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Catastrophic windstorm and fuel-reduction treatments alter ground beetle (Coleoptera: Carabidae) assemblages in a North American sub-boreal forest Kamal J.K. Gandhi a,b,1, Daniel W. Gilmore b,2, Steven A. Katovich c, William J. Mattson d, John C. Zasada e,3, Steven J. Seybold a,b,* a Department of Entomology, 219 Hodson Hall, 1980 Folwell Avenue, University of Minnesota, St. Paul, MN 55108, USA b Department of Forest Resources, 115 Green Hall, University of Minnesota, St. Paul, MN 55108, USA c USDA Forest Service, State and Private Forestry, 1992 Folwell Avenue, St. Paul, MN 55108, USA d USDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, 5985 Hwy K, Rhinelander, WI 54501, USA e USDA Forest Service, Northern Research Station, 1831 Hwy 169E, Grand Rapids, MN 55744, USA ARTICLE INFO ABSTRACT Article history: We studied the short-term effects of a catastrophic windstorm and subsequent salvage-logging and Received 9 September 2007 prescribed-burning fuel-reduction treatments on ground beetle (Coleoptera: Carabidae) assemblages in a Received in revised form 8 June 2008 sub-borealforestinnortheasternMinnesota,USA. During2000–2003, 29,873groundbeetlesrepresentedby Accepted 9 June 2008 71 species were caught in unbaited and baited pitfall traps in aspen/birch/conifer (ABC) and jack pine (JP) cover types. At the family level, both land-area treatment and cover type had significant effects on ground Keywords: beetle trap catches, but there were no effects of pinenes and ethanol as baits. -
(Coleoptera) Associated with Decaying Carcasses in Argentina
A peer-reviewed open-access journal ZooKeys 261: 61–84An (2013)illustrated key to and diagnoses of the species of Histeridae (Coleoptera)... 61 doi: 10.3897/zookeys.261.4226 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research An illustrated key to and diagnoses of the species of Histeridae (Coleoptera) associated with decaying carcasses in Argentina Fernando H. Aballay1, Gerardo Arriagada2, Gustavo E. Flores1, Néstor D. Centeno3 1 Laboratorio de Entomología, Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA, CCT CONICET Mendoza), Casilla de correo 507, 5500 Mendoza, Argentina 2 Sociedad Chilena de Entomologia 3 Laboratorio de Entomología Aplicada y Forense, Universidad Nacional de Quilmes, Roque Sáenz peña 180, B1876BXD, Bernal, Buenos Aires, Argentina Corresponding author: Fernando H. Aballay ([email protected]) Academic editor: M. Catherino | Received 31 October 2012 | Accepted 21 December 2012 | Published 24 January 2013 Citation: Aballay FH, Arriagada G, Flores GE, Centeno ND (2013) An illustrated key to and diagnoses of the species of Histeridae (Coleoptera) associated with decaying carcasses in Argentina. ZooKeys 261: 61–84. doi: 10.3897/ zookeys.261.4226 Abstract A key to 16 histerid species associated with decaying carcasses in Argentina is presented, including diagnoses and habitus photographs for these species. This article provides a table of all species associ- ated with carcasses, detailing the substrate from which they were collected and geographical distribu- tion by province. All 16 Histeridae species registered are grouped into three subfamilies: Saprininae (twelve species of Euspilotus Lewis and one species of Xerosaprinus Wenzel), Histerinae (one species of Hololepta Paykull and one species of Phelister Marseul) and Dendrophilinae (one species of Carcinops Marseul). -
The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al. -
Myxomycetes NMW 2012Orange, Updated KS 2017.Docx
Myxomycete (Slime Mould) Collection Amgueddfa Cymru-National Museum Wales (NMW) Alan Orange (2012), updated by Katherine Slade (2017) Myxomycetes (true or plasmodial slime moulds) belong to the Eumycetozoa, within the Amoebozoa, a group of eukaryotes that are basal to a clade containing animals and fungi. Thus although they have traditionally been studied by mycologists they are distant from the true fungi. Arrangement & Nomenclature Slime Mould specimens in NMW are arranged in alphabetical order of the currently accepted name (as of 2012). Names used on specimen packets that are now synonyms are cross referenced in the list below. The collection currently contains 157 Myxomycete species. Specimens are mostly from Britain, with a few from other parts of Europe or from North America. The current standard work for identification of the British species is: Ing, B. 1999. The Myxomycetes of Britain and Ireland. An Identification Handbook. Slough: Richmond Publishing Co. Ltd. Nomenclature follows the online database of Slime Mould names at www.eumycetozoa.com (accessed 2012). This database is largely in line with Ing (1999). Preservation The feeding stage is a multinucleate motile mass known as a plasmodium. The fruiting stage is a dry, fungus-like structure containing abundant spores. Mature fruiting bodies of Myxomycetes can be collected and dried, and with few exceptions (such as Ceratiomyxa) they preserve well. Plasmodia cannot be preserved, but it is useful to record the colour if possible. Semi-mature fruiting bodies may continue to mature if collected with the substrate and kept in a cool moist chamber. Collected plasmodia are unlikely to fruit. Specimens are stored in boxes to prevent crushing; labels should not be allowed to touch the specimen. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
A Synergism Between Dimethyl Trisulfide and Methyl Thiolacetate
University of Connecticut OpenCommons@UConn Department of Ecology and Evolutionary EEB Articles Biology 2020 A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically-Supplemented Minimal Trap Stephen T. Trumbo University of Connecticut at Waterbury, [email protected] John Dicapua III University of Connecticut at Waterbury, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/eeb_articles Part of the Behavior and Ethology Commons, and the Entomology Commons Recommended Citation Trumbo, Stephen T. and Dicapua, John III, "A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically- Supplemented Minimal Trap" (2020). EEB Articles. 46. https://opencommons.uconn.edu/eeb_articles/46 1 1 2 A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting 3 Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically-Supplemented 4 Minimal Trap 5 6 Stephen T. Trumbo* and John A. Dicapua III 7 8 University of Connecticut, Department of Ecology and Evolutionary Biology, 9 Waterbury, Connecticut, USA 10 11 *Department of Ecology and Evolutionary Biology, University of Connecticut, 99 E. 12 Main St., Waterbury, CT 06710, U.S.A. ([email protected]) 13 ORCID - 0000-0002-4455-4211 14 15 Acknowledgements 16 We thank Alfred Newton (staphylinids), Armin MocZek and Anna Macagno (scarabs) 17 for their assistance with insect identification. Sandra Steiger kindly reviewed the 18 manuscript. The Southern Connecticut Regional Water Authority and the Flanders 19 Preserve granted permission for field experiments. The research was supported by 20 the University of Connecticut Research Foundation. -
Comparison of Coleoptera Emergent from Various Decay Classes of Downed Coarse Woody Debris in Great Smoky Mountains National Park, USA
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 11-30-2012 Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA Michael L. Ferro Louisiana State Arthropod Museum, [email protected] Matthew L. Gimmel Louisiana State University AgCenter, [email protected] Kyle E. Harms Louisiana State University, [email protected] Christopher E. Carlton Louisiana State University Agricultural Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Ferro, Michael L.; Gimmel, Matthew L.; Harms, Kyle E.; and Carlton, Christopher E., "Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA" (2012). Insecta Mundi. 773. https://digitalcommons.unl.edu/insectamundi/773 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA A Journal of World Insect Systematics MUNDI 0260 Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains Na- tional Park, USA Michael L. Ferro Louisiana State Arthropod Museum, Department of Entomology Louisiana State University Agricultural Center 402 Life Sciences Building Baton Rouge, LA, 70803, U.S.A. [email protected] Matthew L. Gimmel Division of Entomology Department of Ecology & Evolutionary Biology University of Kansas 1501 Crestline Drive, Suite 140 Lawrence, KS, 66045, U.S.A. -
Epuraeosoma, a New Genus of Histerinae and Phylogeny of the Family Histeridae (Coleoptera, Histeroidea)
ANNALES ZOOLOGIO (Warszawa), 1999, 49(3): 209-230 EPURAEOSOMA, A NEW GENUS OF HISTERINAE AND PHYLOGENY OF THE FAMILY HISTERIDAE (COLEOPTERA, HISTEROIDEA) Stan isław A dam Śl ip iń s k i 1 a n d S ław om ir Ma zu r 2 1Muzeum i Instytut Zoologii PAN, ul. Wilcza 64, 00-679 Warszawa, Poland e-mail: [email protected] 2Katedra Ochrony Lasu i Ekologii, SGGW, ul. Rakowiecka 26/30, 02-528 Warszawa, Poland e-mail: [email protected] Abstract. — Epuraeosoma gen. nov. (type species: E. kapleri sp. nov.) from Malaysia, Sabah is described, and its taxonomic placement is discussed. The current concept of the phylogeny and classification of Histeridae is critically examined. Based on cladistic analysis of 50 taxa and 29 characters of adult Histeridae a new hypothesis of phylogeny of the family is presented. In the concordance with the proposed phylogeny, the family is divided into three groups: Niponiomorphae (incl. Niponiinae), Abraeomorphae and Histeromorphae. The Abraeomorphae includes: Abraeinae, Saprininae, Dendrophilinae and Trypanaeinae. The Histeromorphae is divided into 4 subfamilies: Histerinae, Onthophilinae, Chlamydopsinae and Hetaeriinae. Key words. — Coleoptera, Histeroidea, Histeridae, new genus, phylogeny, classification. Introduction subfamily level taxa. Óhara provided cladogram which in his opinion presented the most parsimonious solution to the Members of the family Histeridae are small or moderately given data set. large beetles which due to their rigid and compact body, 2 Biology and the immature stages of Histeridae are poorly abdominal tergites exposed and the geniculate, clubbed known. In the most recent treatment of immatures by antennae are generally well recognized by most of entomolo Newton (1991), there is a brief diagnosis and description of gists. -
Contribution to the Knowledge of the Clown Beetle Fauna of Lebanon, with a Key to All Species (Coleoptera, Histeridae)
ZooKeys 960: 79–123 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.960.50186 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Contribution to the knowledge of the clown beetle fauna of Lebanon, with a key to all species (Coleoptera, Histeridae) Salman Shayya1, Tomáš Lackner2 1 Faculty of Health Sciences, American University of Science and Technology, Beirut, Lebanon 2 Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany Corresponding author: Tomáš Lackner ([email protected]) Academic editor: M. Caterino | Received 16 January 2020 | Accepted 22 June 2020 | Published 17 August 2020 http://zoobank.org/D4217686-3489-4E84-A391-1AC470D9875E Citation: Shayya S, Lackner T (2020) Contribution to the knowledge of the clown beetle fauna of Lebanon, with a key to all species (Coleoptera, Histeridae). ZooKeys 960: 79–123. https://doi.org/10.3897/zookeys.960.50186 Abstract The occurrence of histerids in Lebanon has received little specific attention. Hence, an aim to enrich the knowledge of this coleopteran family through a survey across different Lebanese regions in this work. Sev- enteen species belonging to the genera Atholus Thomson, 1859,Hemisaprinus Kryzhanovskij, 1976, Hister Linnaeus, 1758, Hypocacculus Bickhardt, 1914, Margarinotus Marseul, 1853, Saprinus Erichson, 1834, Tribalus Erichson, 1834, and Xenonychus Wollaston, 1864 were recorded. Specimens were sampled mainly with pitfall traps baited with ephemeral materials like pig dung, decayed fish, and pig carcasses. Several species were collected by sifting soil detritus, sand cascading, and other specialized techniques. Six newly recorded species for the Lebanese fauna are the necrophilous Hister sepulchralis Erichson, 1834, Hemisap- rinus subvirescens (Ménétriés, 1832), Saprinus (Saprinus) externus (Fischer von Waldheim, 1823), Saprinus (Saprinus) figuratus Marseul, 1855, and Saprinus (Saprinus) niger (Motschulsky, 1849) all associated with rotting fish and dung, and the psammophilousXenonychus tridens (Jacquelin du Val, 1853).