Purdue University Purdue e-Pubs CTRC Research Publications Cooling Technologies Research Center 2013 Nucleate Boiling from Smooth and Rough Surfaces--Part 1: Fabrication and Characterization of an Optically Transparent Heater-Sensor Substrate with Controlled Surface Roughness J. P. McHale The Aerospace Corporation S V. Garimella Purdue University,
[email protected] Follow this and additional works at: http://docs.lib.purdue.edu/coolingpubs McHale, J. P. and Garimella, S V., "Nucleate Boiling from Smooth and Rough Surfaces--Part 1: Fabrication and Characterization of an Optically Transparent Heater-Sensor Substrate with Controlled Surface Roughness" (2013). CTRC Research Publications. Paper 184. http://dx.doi.org/http://dx.doi.org/10.1016/j.expthermflusci.2012.08.006 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact
[email protected] for additional information. Nucleate boiling from smooth and rough surfaces--Part 1: Fabrication and characterization of an optically transparent heater-sensor substrate with controlled surface roughness John P. McHale and Suresh V. Garimella * Cooling Technologies Research Center, an NSF IUCRC School of Mechanical Engineering and Birck Nanotechnology Center Purdue University, West Lafayette, IN 47907-2088 USA ABSTRACT The effect of surface roughness on nucleate boiling heat transfer is not clearly understood. This study is devised to conduct detailed heat transfer and bubble measurements during boiling on a heater surface with controlled roughness. This first of two companion papers discusses details of the fabrication, construction, and operation of the experimental facility. Test pieces are fabricated from 50.8 mm × 50.8 mm × 3.18 mm borosilicate glass squares that are roughened by abrading with diamond compound with particles of known size and then annealed in order to control small-scale roughness features.