ACIDIFYING SOIL for Blueberries and Ornamental Plants in the Yard and Garden West of the Cascade Mountain Range in Oregon and Washington
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nutrient Management and Imbalances David H
98 Nutrient Management and Imbalances David H. Gent, J Robert Sirrine, and Heather M. Darby Hop plants produce abundant biomass in the form of bines, leaves, and cones. High- yielding plants such as hop require adequate nutrition. Many of the various nutrients required by hop may be deficient or in excess of the crop’s needs. It can be difficult to pinpoint the cause of abnormal plant symptoms, especially if multiple production factors lead to the same symptom. General symptoms associated with nutrient imbalances are described in this section, as well as known nutrient interactions with diseases and arthropod pests. Fertilization recommendations are beyond the scope of this pest management guide and are not provided. Recommendations vary widely in published literature, differing among production regions, varieties, irrigation methods, soil types, and production goals. Readers should seek input from local experts for guidance appropriate to their region and situation. Boron Iron Boron deficiency can result in delayed Iron deficiency is first observed on emergence of shoots; stunting, distortion, young leaves as yellowing between veins, and crinkling of young leaves (Fig. 257); while veins remain green (Fig. 260, right- and yellowing and death of shoot tips (Fig. hand image, and Fig. 261). Iron deficiency 258). Leaves of affected plants may be small is most common in alkaline soils, although and brittle, and may develop a fluffy-tipped it can be induced in highly acidic soils appearance due to impaired development (approximately pH 5.7 or less) because of lobes (Fig. 259). Deficiencies are most of enhanced solubility and uptake of common in acid and/or sandy textured soils. -
Choosing a Soil Amendment Fact Sheet No
Choosing a Soil Amendment Fact Sheet No. 7.235 Gardening Series|Basics by J.G. Davis and D. Whiting* A soil amendment is any material added not be used as a soil amendment. Don’t add Quick Facts to a soil to improve its physical properties, sand to clay soil — this creates a soil structure such as water retention, permeability, water similar to concrete. • On clayey soils, soil infiltration, drainage, aeration and structure. Organic amendments increase soil amendments improve the The goal is to provide a better environment organic matter content and offer many soil aggregation, increase for roots. benefits. Over time, organic matter improves porosity and permeability, and To do its work, an amendment must be soil aeration, water infiltration, and both improve aeration, drainage, thoroughly mixed into the soil. If it is merely water- and nutrient-holding capacity. Many and rooting depth. buried, its effectiveness is reduced, and it will organic amendments contain plant nutrients interfere with water and air movement and and act as organic fertilizers. Organic matter • On sandy soils, soil root growth. also is an important energy source for amendments increase the Amending a soil is not the same thing bacteria, fungi and earthworms that live in water and nutrient holding as mulching, although many mulches also the soil. capacity. are used as amendments. A mulch is left on the soil surface. Its purpose is to reduce Application Rates • A variety of products are available bagged or bulk for evaporation and runoff, inhibit weed growth, Ideally, the landscape and garden soils and create an attractive appearance. -
Fixed Nitrogen in Agriculture and Its Role in Agrocenoses
Agronomy Research 19(2), 601–611, 2021 https://doi.org/10.15159/AR.21.086 Fixed nitrogen in agriculture and its role in agrocenoses S. Tanchyk1, D. Litvinov1, A. Butenko2,*, O. Litvinova3, O. Pavlov1, A. Babenko1, N. Shpyrka1, V.Onychko4, I. Masyk5 and T. Onychko4 1National University of Life and Environmental Sciences of Ukraine, Agrobiological faculty, Department of Agriculture and herbology, Heroyiv Oborony 12, UA03041 Кyiv, Ukraine 2Sumy National Agrarian University, Faculty of agricultural technologies and environmental, Plant growing Department, H. Kondratieva 160, UA40021 Sumy, Ukraine 3National University of Life and Environmental Sciences of Ukraine, Agrobiological faculty, Department of Agricultural chemistry and quality of plant products, Heroyiv Oborony 12, UA03041 Кyiv, Ukraine 4Sumy National Agrarian University, Faculty of agricultural technologies and environmental, Department of Selection and seeds named after M.D. Honcharov, H. Kondratieva 160, UA40021 Sumy, Ukraine 5Sumy National Agrarian University, Faculty of agricultural technologies and environmental, Department of Agriculture, soil and agrochemistry, H. Kondratieva 160, UA40021 Sumy, Ukraine *Correspondence: [email protected] Received: February 23rd, 2021; Accepted: May 12th, 2021; Published: May 19th, 2021 Abstract. On typical low-humus black soils in short crop rotations with legumes (25–33%) and without them, it was found that depending on the set of crops in crop rotation and application of fertilizer rates, nitrogen yield per crop is from 355 kg ha-1 to 682 kg ha-1. The recommended fertilization system provided nitrogen compensation for crop yields by only 31–76%. Hence, in the plant-fertilizer system nitrogen deficiency varies from 161 to 370 kg ha-1. The greatest nitrogen deficiency in the soil is observed in crop rotation without the use of fertilizers with the following crop rotation: peas-winter wheat-grain maize-spring barley. -
Improving Soil Nitrogen Availability and Rice Growth Performance on a Tropical Acid Soil Via Mixture of Rice Husk and Rice Straw Biochars
applied sciences Article Improving Soil Nitrogen Availability and Rice Growth Performance on a Tropical Acid Soil via Mixture of Rice Husk and Rice Straw Biochars Gunavathy Selvarajh , Huck Ywih Ch’ng * , Norhafizah Md Zain, Palsan Sannasi and Siti Nuurul Huda Mohammad Azmin Faculty of Agro-Based Industry, Campus Jeli, University Malaysia Kelantan, Kelantan 17600, Malaysia; [email protected] (G.S.); norhafi[email protected] (N.M.Z.); [email protected] (P.S.); [email protected] (S.N.H.M.A.) * Correspondence: [email protected]; Tel.: +60-17-853-7510 Featured Application: This research focuses on using an environmentally friendly technology (mixture of rice straw and rice husk biochars) to sustainably minimize ammonia volatilization, increase soil nutrient retention, and improve rice plant nutrient uptake and use efficiency. The mixture of rice straw and rice husk biochars has a larger surface area and numerous pores to chelate ammonium and nitrate ions. This process will fundamentally reduce the loss of ammo- nia via volatilization from urea fertilizer being applied, thus reducing the excessive use of urea fertilizer in agricultural sector. The biochar at 5 and 10 t ha−1 significantly minimized ammo- nia volatilization by 33.5–40.7%. It resulted in an increase of nutrient uptake, use efficiency, and dry matter production of rice plant. This work may not only contribute to the reduction of urea fertilizer import bill of Malaysia, but also pave the way for better means of adding value to the agricultural waste to avoid environmental pollution. It also contributes to increasing rice produc- tion by solving the problem of ammonia loss from urea fertilizer in tropical acid soil. -
Characterization of Nutrient Disorders and Impacts on Chlorophyll and Anthocyanin Concentration of Brassica Rapa Var
agriculture Article Characterization of Nutrient Disorders and Impacts on Chlorophyll and Anthocyanin Concentration of Brassica rapa var. Chinensis 1 1 1, 2 Patrick Veazie , Paul Cockson , Josh Henry y, Penelope Perkins-Veazie and Brian Whipker 1,* 1 Department of Horticultural Sciences, North Carolina State University, Raleigh, NC 27695, USA; [email protected] (P.V.); [email protected] (P.C.); [email protected] (J.H.) 2 Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; [email protected] * Correspondence: [email protected] Current address is: The Scotts Miracle-Gro Company, Marysville, OH 43040, USA. y Received: 3 September 2020; Accepted: 5 October 2020; Published: 8 October 2020 Abstract: Essential plant nutrients are needed at crop-specific concentrations to obtain optimal growth and yield. Foliar tissue analysis is the standard method for assessing nutrient levels in plants. Symptoms of nutrient deficiency or toxicity occur when the foliar tissue values become too low or high. Diagnostic nutrient deficiency criteria for Brassica rapa var. Chinensis (bok choy) is lacking in the current literature. In this study, green (‘Black Summer’) and purple (‘Red Pac’) bok choy plants were grown in silica sand culture, with control plants receiving a complete modified Hoagland’s all-nitrate solution, and nutrient-deficient plants induced by using a complete nutrient formula withholding a single nutrient. Tissue samples were collected at the first sign of visual disorder symptoms and analyzed for dry weight and nutrient concentrations of all plant essential elements. Six weeks into the experiment, the newest matured leaves were sampled for chlorophyll a, b, and total carotenoids concentrations for both cultivars, and total anthocyanin concentration in ‘Red Pac’. -
Soil Acidification
viti-notes [grapevine nutrition] Soil acidifi cation Viti-note Summary: Characteristics of acidic soils • Soil pH Calcium and magnesium are displaced • Soil acidifi cation in by aluminium (Al3+) and hydrogen (H+) vineyards and are leached out of the soil. Acidic soils below pH 6 often have reduced • Characteristics of acidic populations of micro-organisms. As soils microbial activity decreases, nitrogen • Acidifying fertilisers availability to plants also decreases. • Effect of soil pH on Sulfur availability to plants also depends rate of breakdown of on microbial activity so in acidic soils, ammonium to nitrate where microbial activity is reduced, Figure 1. Effect of soil pH on availability of minerals sulfur can become unavailable. (Sulfur • Management of defi ciency is not usually a problem for acidifi cation Soil pH vineyards as adequate sulfur can usually • Correction of soil pH All plants and soil micro-organisms have be accessed from sulfur applied as foliar with lime preferences for soil within certain pH fungicides). ranges, usually neutral to moderately • Strategies for mature • Phosphorus availability is reduced at acid or alkaline. Soil pH most suitable vines low pH because it forms insoluble for grapevines is between 5.5 and 8.5. phosphate compounds with In this range, roots can acquire nutrients aluminium, iron and manganese. from the soil and grow to their potential. As soils become more acid or alkaline, • Molybdenum is seldom defi cient in grapevines become less productive. It is neutral to alkaline soils but can form important to understand the impacts of insoluble compounds in acid soils. soil pH in managing grapevine nutrition, • In strongly acidic soil (pH <5), because the mobility and availability of aluminium may become freely nutrients is infl uenced by pH (Figure 1). -
Soil Acidification
Soil Acidification and Pesticide Management pH 5.1 November 14, 2018 MSU Pesticide Education Program pH 3.8 Image courtesy Rick Engel Clain Jones [email protected] 406-994-6076 MSU Soil Fertility Extension What happened here? Image by Sherrilyn Phelps, Sask Pulse Growers Objectives Specifically, I will: 1. Show prevalence of acidification in Montana (similar issue in WA, OR, ID, ND, SD, CO, SK and AB) 2. Review acidification’s cause and contributing factors 3. Show low soil pH impact on crops 4. Explain how this relates to efficacy and persistence of pesticides (specifically herbicides) 5. Discuss steps to prevent or minimize acidification Prevalence: MT counties with at least one field with pH < 5.5 Symbol is not on location of field(s) 40% of 20 random locations in Chouteau County have pH < 5.5. Natural reasons for low soil pH . Soils with low buffering capacity (low soil organic matter, coarse texture, granitic rather than calcareous) . Historical forest vegetation soils < pH than historical grassland . Regions with high precipitation • leaching of nitrate and base cations • higher yields, receive more N fertilizer • often can support continuous cropping and N each yr Agronomic reasons for low soil pH • Nitrification of ammonium-based N fertilizer above plant needs - + ammonium or urea fertilizer + air + H2O→ nitrate (NO3 ) + acid (H ) • Nitrate leaching – less nitrate uptake, less root release of basic - - anions (OH and HCO3 ) to maintain charge balance • Crop residue removal of Ca, Mg, K (‘base’ cations) • No-till concentrates acidity where N fertilizer applied • Legumes acidify their rooting zone through N-fixation. Perennial legumes (e.g., alfalfa) more than annuals (e.g., pea), but much less than fertilization of wheat. -
Nitrogen Deposition Contributes to Soil Acidification in Tropical Ecosystems
Global Change Biology Global Change Biology (2014), doi: 10.1111/gcb.12665 Nitrogen deposition contributes to soil acidification in tropical ecosystems XIANKAI LU1 , QINGGONG MAO1,2,FRANKS.GILLIAM3 ,YIQILUO4 and JIANGMING MO 1 1Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China, 2University of Chinese Academy of Sciences, Beijing 100049, China, 3Department of Biological Sciences, Marshall University, Huntington, WV 25755-2510, USA, 4Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA Abstract Elevated anthropogenic nitrogen (N) deposition has greatly altered terrestrial ecosystem functioning, threatening eco- system health via acidification and eutrophication in temperate and boreal forests across the northern hemisphere. However, response of forest soil acidification to N deposition has been less studied in humid tropics compared to other forest types. This study was designed to explore impacts of long-term N deposition on soil acidification pro- cesses in tropical forests. We have established a long-term N-deposition experiment in an N-rich lowland tropical for- À1 À1 est of Southern China since 2002 with N addition as NH4NO3 of 0, 50, 100 and 150 kg N ha yr . We measured soil acidification status and element leaching in soil drainage solution after 6-year N addition. Results showed that our study site has been experiencing serious soil acidification and was quite acid-sensitive showing high acidification < < (pH(H2O) 4.0), negative water-extracted acid neutralizing capacity (ANC) and low base saturation (BS, 8%) through- out soil profiles. Long-term N addition significantly accelerated soil acidification, leading to depleted base cations and decreased BS, and further lowered ANC. -
Improving Garden Soils with Organic Matter, EC 1561
EC 1561 • May 2003 $2.50 Improving Garden Soils with Organic Matter N. Bell, D.M. Sullivan, L.J. Brewer, and J. Hart This publication will help you understand the • Tomatoes and peppers get blossom-end rot, importance of soil organic matter levels to good even if fertilized with calcium. plant performance. It also contains suggestions • Water tends to pool on the soil surface and to for suitable soil amendments. Any soil, no drain slowly, or it runs off the surface. matter how compacted, can be improved by the addition of organic matter. The result will be a nnnn better environment for almost any kind of plant. What makes a productive soil? nnnn A productive soil provides physical support, water, air, and nutrients to plants and soil- What gardening problems are dwelling organisms (see “What is soil?” caused by poor soil quality? page 2). Like humans, roots and soil organisms Many problems with home vegetable gar- breathe and require sufficient air and water to dens, fruit trees, shrubs, and flower gardens are live. As a result, a good soil is not “solid”; caused not by pests, diseases, or a lack of rather, between 40 and 60 percent of the soil nutrients, but by poor soil physical conditions. volume is pores. The pores may be filled with Symptoms of poor soil quality include the water or air, making both available to plants following. (see illustration on page 3). • The soil is dried and cracked in summer. The largest pores control aeration and move- • Digging holes in the soil is difficult, whether ment of water through the soil and are largely it is wet or dry. -
Lowering Soil Ph for Horticulture Crops
PURDUE EXTENSION HO-241-W Commercial Greenhouse and Nursery Production Lowering Soil pH for Horticulture Crops Purdue Horticulture and Michael V. Mickelbart and Kelly M. Stanton, Landscape Architecture Purdue Horticulture and Landscape Architecture www.ag.purdue.edu/HLA Steve Hawkins and James Camberato, Purdue Agronomy Purdue Agronomy www.ag.purdue.edu/AGRY The pH scale measures the acidity or alkalinity of a solution. The scale extends from 0 (a very strong acid) to 14 (a very strong base or highly alkaline). The middle of the scale, 7, is neutral, neither acidic nor basic. Soil pH is important because it affects the availability of nutrients in the rooting zone. This publication explains when lowering soil pH is important for commercial producers and recommends practices to safely and effectively lower soil pH. For more about soil pH, see Purdue Extension publication HO-240-W, Commercial Greenhouse and Nursery Production: Soil pH (available from the Purdue Extension Education Store, www. the-education-store.com). When it comes to soil pH, an accurate diagnosis is essential. Before making any changes, test your soil pH. Purdue Extension provides a list of commercial soil testing labs at: www.ag.purdue.edu/agry/extension/Pages/soil-testing-labs.aspx Why Lower Soil pH? Some plants (such as blueberries or azaleas) are adapted to grow in acid soils — even as low as pH 4.5. If you are trying to grow them you may want a soil pH less than 6, but remember that even acid-loving plants have their limits. Table 1. Effects of soil amendments on pH. -
Chemical and Biochemical Properties of Soils Developed from Different Lithologies in Northwestern Spain (Galicia)
Article Chemical and Biochemical Properties of Soils Developed from Different Lithologies in Northwestern Spain (Galicia) Valeria Cardelli 1,*, Stefania Cocco 1, Alberto Agnelli 2, Serenella Nardi 3, Diego Pizzeghello 3, Maria J. Fernández‐Sanjurjo 4 and Giuseppe Corti 1 1 Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, 60131, Italy; [email protected] (S.C.); [email protected] (G.C.) 2 Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Perugia, 06121, Italy; [email protected] 3 Department of Agronomy, Food, Natural Resources, Animals and the Environment, Università degli Studi di Padova, Legnaro, 35020, Italy; [email protected] (S.N.); [email protected] (D.P.) 4 Department of Soil and Agronomic Chemistry, Universidade de Santiago de Compostela, Lugo, 27001, Spain; [email protected] * Correspondence: [email protected]; Tel.: +39‐338‐599‐6867 Academic Editors: Adele Muscolo and Miroslava Mitrovic Received: 15 March 2017; Accepted: 19 April 2017; Published: 22 April 2017 Abstract: Physical and chemical soil properties are generally correlated with the parent material, as its composition may influence the pedogenetic processes, the content of nutrients, and the element biocycling. This research studied the chemical and biochemical properties of the A horizon from soils developed on different rocks like amphibolite, serpentinite, phyllite, and granite under a relatively similar climatic regime from Galicia (northwest Spain). In particular, the effect of the parent material on soil evolution, organic carbon sequestration, and the hormone‐like activity of humic and fulvic acids were tested. Results indicated that all the soils were scarcely fertile because of low concentrations of available P, exchangeable Ca (except for the soils on serpentinite and phyllite), and exchangeable K, but sequestered relevant quantities of organic carbon. -
Soil Acidity in Oregon: Understanding and Using Concepts for Crop Production
Soil Acidity in Oregon: Understanding and Using Concepts for Crop Production EM 9061 • July 2013 J.M. Hart, D.M. Sullivan, N.P. Anderson, A.G. Hulting, D.A. Horneck, and N.W. Christensen oil acidity, expressed by low pH, causes Quick facts reduced crop growth and significant economic Sloss. It is the most commonly overlooked and Nitrogen (N) fertilizer application is the poorly understood yield-limiting factor in western predominant management practice that causes Oregon (Figure 1) and a developing concern in east- soil acidification (declining soil pH). Nitrogen ern Oregon (Figure 2). fertilizers that supply N only in the ammonium (NH4) form are the most acidifying (page 6). Crops and varieties differ in tolerance to soil acidity. Recommended minimum pH values for a wide range of crops are listed in Table 9 pH 5.6 (pages 18–19). Lime is recommended to main- tain soil pH above recommended values. pH 5.2 Increased soil acidity can injure plants by a number of mechanisms, including: pH below 5.0 • Increasing the amount of soluble alumi- State Nicole © Oregon Anderson, University num (Al) and manganese (Mn) in soil to Figure 1.—Soft white winter wheat growth decreases toxic levels (pages 9–11) sharply when soil pH is below the crop “threshold.” The soil pH near the center of the photo (where bare soil is • Reducing the amount of plant-available visible) is below 5.0. The soil pH on the right side of the phosphorus (P), calcium (Ca), and photo (where winter wheat is uniform) is 5.6. molybdenum (Mo) (pages 11–13) Some legumes are very sensitive to soil acid- ity because soil acidity inhibits N fixation by bacteria of the genus Rhizobium.