Chemical Engineering Major Is a Unique Blend of Engi- Elective Courses

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Engineering Major Is a Unique Blend of Engi- Elective Courses MC300 Fundamentals of Engineering Mechanics and Design: CH400 Chemical Engineering Professional Practice: The course will The engineering design process and the method of design are intro- meet once per week and will cover topics such as ethics, continuing educa- duced. Principles of equilibrium are used to analyze forces on stati- tion, and global and social issues within chemical engineering. Special cally determinate rigid bodies and structures to include trusses and emphasis will be placed on preparation for the Fundamentals of Engineer- frames. The behavior of deformable bodies under axial, flexural, and ing Exam using practice problems and graded practice exams. The course torsional loading is examined. The concepts of stress, strain, and also covers professional plant engineering using plant simulators and mock material properties are introduced and are used to relate external exercises to teach proper troubleshooting and response techniques. forces applied to a body to the resulting internal forces and defor- mations so that performance can be evaluated. Practical applications CH402 Chemical Engineering Process Design: This course provides a involving the design and adequacy of mechanical and structural capstone experience that brings together material from previous courses to elements under various loading conditions are emphasized. examine contemporary problems in chemical engineering process design. The course provides instruction in the conceptual design of processes to MC311 Thermal-Fluid Systems I: Thermal-Fluid Systems I is an achieve design goals, as well as the economic optimization of the process. integrated study of fundamental topics in thermodynamics and fluid The course emphasizes the use of computer simulations, theory of unit mechanics. The course introduces conservation principles for mass, operations, process control, safety, environmental and economic factors. energy, and linear momentum as well as the 2nd Law of Thermody- The effect of changes in design on the process economics will be investi- namics. Principles are applied to incompressible flow in pipes and gated. Written and oral design reports for the capstone design project are turbomachinery, external flows, power generation systems, refrigera- required. tion cycles, and total air-conditioning focusing on the control volume approach. Laboratory exercises are integrated into classroom work. CH459 Chemical Engineering Laboratory: This course provides la- This course includes completion of a comprehensive, out-of-class boratory experience in selected chemical engineering unit operations, such design problem. This design problem provides the opportunity for as gas absorption, evaporation, distillation, liquid-liquid extraction, cooling students to apply engineering science and the engineering design tower operation, chemical reactors, heat transfer, and mass transfer/ process to a hands-on project. diffusion studies. Written and oral reports required. MC312 Thermal-Fluid Systems II: This course continues the CH365 Chemical Engineering Thermodynamics: This course covers integrated study of fundamental topics in thermodynamics and fluid the body of thermodynamic knowledge necessary for understanding mod- mechanics. The course applies conservation principles for mass, ern chemical process simulation. Students learn the theory behind the ther- Department of Chemistry energy, and linear momentum as well as the 2nd Law of Thermody- modynamic methods used in the software. The course includes calculus- namics. Principles are applied to an automotive system to examine and numerical-based thermodynamics approaches for determining the prop- engine performance (Otto and Diesel Cycles) and to high perfor- erties of substances, solutions, and multiphase mixtures. Topics include and Life Science mance aircraft to examine the Brayton Cycle, compressible flow, equations of state, pure component properties, transport properties, proper- external flow, lift, and drag. Laboratory exercises are integrated into ties of mixtures, fugacity, excess properties, activity coefficients, and phase classroom work. Design problems provide the opportunity for stu- equilibria. The problems in the course emphasize engineering applications. dents to apply engineering science to the design of thermal-fluid Topics covered in class are related to real systems through the use of chem- systems. ical process simulators. EE301 Fundamentals of Electrical Engineering: This first course CH485 Heat & Mass Transfer: This course includes the study of the in electrical engineering for the non-electrical engineering major mechanisms of energy and mass transport, with special emphasis on appli- provides a foundation in basic circuit theory and analysis, power in cations in engineering systems. Coverage includes Fourier's Law of Heat circuits and electric power systems, and analog electronics. Lectures, Conduction, and Fick's Law of Diffusion, the development of shell energy laboratory work, classroom demonstrations and discussions showing and species balances, and the use of these equations to solve for tempera- practical applications emphasize and illustrate the fundamental theo- ture and concentration profiles in chemical engineering systems. An im- ries and concepts presented in the course. Engineering design is portant emphasis in the course is the use of transport equations to under- reflected in laboratory work and minor design problems. stand species diffusion, convection, and chemical reaction in equipment design. CH367 Introduction to Automatic Process Control: This course covers the principles necessary to understand the automatic control of chemical processes. Students learn the current mathematical models and mechanical details of various control elements, including sen- sors, transmitters, actuators, and controllers. Application of mathematical models will United States Military Academy be covered with dynamic modeling techniques as well as real-time training using Chemical process simulators. The For more information, contact: course will also cover tuning LTC Matthew Armstrong, Program Director (845-938-8555) of controllers as well as safe Engineering response to process upsets. A LTC Corey James, Assistant Program Director (845-938-3909) capstone project will involve dynamic modelling of an Major integrated process control system. Department of Chemistry and Life Science Classes of 2020 and beyond Bartlett Hall West Point, NY 10996 An Army ROW- PU, or reverse- Chemical Engineering A cadet majoring in Chemical Engineering must complete 25 core osmosis water (including CH102, PH206, and MA205) and 18 program courses for a purification total of 43 academic courses. The program includes 15 required and 3 unit—involves The USMA chemical engineering major is a unique blend of engi- elective courses. fluid flow, heat neering, mathematics, and basic sciences. Chemical engineering cadets exchange, and use this background to solve a wide range of problems. This is what our mass transfer program does - we teach cadets to solve problems. This philosophy is The 15 required courses are: processes—all the basis of our mission statement: chemical engi- CH362 Mass & Energy Balances neering unit The mission of the chemical engineering program is to prepare com- MA364 Engineering Mathematics operations. missioned leaders of character who are proficient in applying chemical CH363 Separation Processes and engineering principles to solve problems in a complex operational CH364 Chemical Reaction Engineering environment. CH367 Intro to Automatic Process Control COURSE DESCRIPTIONS: During a career as commissioned officers in the United States Army CH383 Organic Chemistry I CH362 Mass & Energy Balances: Introduction to mass and and beyond, program graduates: MC300 Fundamentals of Engineering Mechanics & Design energy balances in single phase and multiphase, nonreactive and MC311 Thermal-Fluid Systems I reactive systems. Course topics include an introduction to engineer- Demonstrate effective leadership and chemical engineering MC312 Thermal-Fluid Systems II ing calculations and process variables, use of computers in solving expertise EE301 Fundamentals of Electrical Engineering chemical engineering problems, fundamentals of material balances in Contribute to the solution of infrastructure or operational CH400 Chemical Engineering Professional Practice single-phase and multi-phase systems, energy balances on nonreac- problems in a complex operational environment. CH402 Chemical Engineering Process Design tive and reactive processes, applications of combined material and Succeed in graduate school or other advanced study pro- CH459 Chemical Engineering Laboratory energy balances, balances on transient processes, introduction to grams. CH365 Chemical Engineering Thermodynamics chemical engineering unit operations, and a general introduction to Advance their careers through clear and precise technical CH485 Heat & Mass Transfer the field of chemical engineering. communication. MA364 Engineering Mathematics: This course provides addi- Three engineering electives must be taken to complete the require- tional mathematical techniques and deepens the understanding of ments of the major. Suggested areas of specialization are: On completion of the chemical engineering program, our graduates concepts in mathematics to support continued study in science and will be able to: engineering. Emphasis is placed upon using mathematics to gain insight into natural and man-made phenomena that give rise to prob- Identify,
Recommended publications
  • Opportunities for Catalysis in the 21St Century
    Opportunities for Catalysis in The 21st Century A Report from the Basic Energy Sciences Advisory Committee BASIC ENERGY SCIENCES ADVISORY COMMITTEE SUBPANEL WORKSHOP REPORT Opportunities for Catalysis in the 21st Century May 14-16, 2002 Workshop Chair Professor J. M. White University of Texas Writing Group Chair Professor John Bercaw California Institute of Technology This page is intentionally left blank. Contents Executive Summary........................................................................................... v A Grand Challenge....................................................................................................... v The Present Opportunity .............................................................................................. v The Importance of Catalysis Science to DOE.............................................................. vi A Recommendation for Increased Federal Investment in Catalysis Research............. vi I. Introduction................................................................................................ 1 A. Background, Structure, and Organization of the Workshop .................................. 1 B. Recent Advances in Experimental and Theoretical Methods ................................ 1 C. The Grand Challenge ............................................................................................. 2 D. Enabling Approaches for Progress in Catalysis ..................................................... 3 E. Consensus Observations and Recommendations..................................................
    [Show full text]
  • Process Intensification in the Synthesis of Organic Esters : Kinetics
    PROCESS INTENSIFICATION IN THE SYNTHESIS OF ORGANIC ESTERS: KINETICS, SIMULATIONS AND PILOT PLANT EXPERIMENTS By Venkata Krishna Sai Pappu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chemical Engineering 2012 ABSTRACT PROCESS INTENSIFICATION IN THE SYNTHESIS OF ORGANIC ESTERS: KINETICS, SIMULATIONS AND PILOT PLANT EXPERIMENTS By Venkata Krishna Sai Pappu Organic esters are commercially important bulk chemicals used in a gamut of industrial applications. Traditional routes for the synthesis of esters are energy intensive, involving repeated steps of reaction typically followed by distillation, signifying the need for process intensification (PI). This study focuses on the evaluation of PI concepts such as reactive distillation (RD) and distillation with external side reactors in the production of organic acid ester via esterification or transesterification reactions catalyzed by solid acid catalysts. Integration of reaction and separation in one column using RD is a classic example of PI in chemical process development. Indirect hydration of cyclohexene to produce cyclohexanol via esterification with acetic acid was chosen to demonstrate the benefits of applying PI principles in RD. In this work, chemical equilibrium and reaction kinetics were measured using batch reactors for Amberlyst 70 catalyzed esterification of acetic acid with cyclohexene to give cyclohexyl acetate. A kinetic model that can be used in modeling reactive distillation processes was developed. The kinetic equations are written in terms of activities, with activity coefficients calculated using the NRTL model. Heat of reaction obtained from experiments is compared to predicted heat which is calculated using standard thermodynamic data. The effect of cyclohexene dimerization and initial water concentration on the activity of heterogeneous catalyst is also discussed.
    [Show full text]
  • Chemical Process Modeling in Modelica
    Chemical Process Modeling in Modelica Ali Baharev Arnold Neumaier Fakultät für Mathematik, Universität Wien Nordbergstraße 15, A-1090 Wien, Austria Abstract model creation involves only high-level operations on a GUI; low-level coding is not required. This is the Chemical process models are highly structured. Infor- desired way of input. Not surprisingly, this is also mation on how the hierarchical components are con- how it is implemented in commercial chemical process nected helps to solve the model efficiently. Our ulti- simulators such as Aspen PlusR , Aspen HYSYSR or mate goal is to develop structure-driven optimization CHEMCAD R . methods for solving nonlinear programming problems Nonlinear system of equations are generally solved (NLP). The structural information retrieved from the using optimization techniques. AMPL (FOURER et al. JModelica environment will play an important role in [12]) is the de facto standard for model representation the development of our novel optimization methods. and exchange in the optimization community. Many Foundations of a Modelica library for general-purpose solvers for solving nonlinear programming (NLP) chemical process modeling have been built. Multi- problems are interfaced with the AMPL environment. ple steady-states in ideal two-product distillation were We are aiming to create a ‘Modelica to AMPL’ con- computed as a proof of concept. The Modelica source verter. One could use the Modelica toolchain to create code is available at the project homepage. The issues the models conveniently on a GUI. After exporting the encountered during modeling may be valuable to the Modelica model in AMPL format, the already existing Modelica language designers. software environments (solvers with AMPL interface, Keywords: separation, distillation column, tearing AMPL scripts) can be used.
    [Show full text]
  • The Role of Nanotechnology in Chemical Substitution
    EUROPEAN PARLIAMENT Scientific Technology Options Assessment S T O A The role of Nanotechnology in Chemical Substitution STUDY IPOL/A/STOA/ST/2006-029 PE 383.212 This project was commissioned by STOA under Framework Contract IP/A/STOA/FWC/2005-28). The associated workshop, "The Role of Nanotechnology in Chemical Substitution" was organised by the European Parliament in Brussels on 13 September 2006. Only published in English. Authors: ETAG European Technology Assessment Group Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Danish Board of Technology (DBT), Copenhagen Flemish Institute for Science and Technology Assessment (viWTA), Brussels Parliamentary Office of Science and Technology (POST), London Rathenau Institute, The Hague Dr. Ulrich Fiedeler, ITAS E-mail: [email protected] Administrator: Mr. Miklos Györffi Policy Department A: Economic and Scientific Policy DG Internal Policies European Parliament Rue Wiertz 60 - ATR 00K076 B-1047 Brussels Tel: +32 (0)2 283 25 05 Fax: +32 (0)2 284 49 84 E-mail: [email protected] Manuscript completed in April 2007. The opinions expressed in this document do not necessarily represent the official position of the European Parliament. Reproduction and translation for non-commercial purposes are authorised provided the source is acknowledged and the publisher is given prior notice and receives a copy. E-mail: poldep- [email protected]. IP/A/STOA/ST/2006-029 PE 383.212 TABLE OF CONTENTS 1 EXECUTIVE SUMMARY..............................................................................................................ii
    [Show full text]
  • Chemical Engineering Curriculum
    CHEMICAL ENGINEERING CURRICULUM Fall Term Spring Term First Year EGGG 101 Introduction to Engineering (FYE) 2 CHEG 112 Introduction to Chemical Engineering 3 CHEM 111 General Chemistry 3 CHEM 112 General Chemistry 3 MATH 242 Analytic Geometry & Calculus B 4 MATH 243 Analytic Geometry & Calculus C 4 CISC 106 General Computer Science for Engineers 3 PHYS 207 Fundamentals of Physics I 4 ENGL 110 Critical Reading and Writing 3 Breadth Requirement Elective 1 3 15 17 Second Year CHEG 231 Chemical Engineering Thermodynamics 3 CHEG 325 Chemical Engineering Thermodynamics 3 CHEM 220 Quantitative Analysis 3 CHEG 304 Random Variability in Chemical Processes 3 CHEM 221 Quantitative Analysis Laboratory 1 CHEM 444 Physical Chemistry 3 PHYS 208 Fundamentals of Physics II 4 CHEM 445 Physical Chemistry Laboratory ( a ) 0/1 MSEG 302 Materials Science for Engineers 3 MATH 305 Applied Math for Chemical Engineering 3 Breadth Requirement Elective 2 3 Breadth Requirement Elective 3 3 17 15/16 Third Year CHEG 332 Chemical Engineering Kinetics 3 CHEG 342 Heat and Mass Transfer 3 CHEG 341 Fluid Mechanics 3 CHEG 345 Chemical Engineering Laboratory I 3 CHEM 331 Organic Chemistry I 3 CHEM 332 Organic Chemistry ( b ) or 3 CHEM 333 Organic Chemistry Laboratory 1/2 CHEM 527 Introduction to Biochemistry Technical Elective 1 3 Breadth Requirement Elective 4 3 Technical Elective 2 3 CHEG Elective 1 3 16/17 15 Fourth Year CHEG 431 Chemical Process Design 1 3 CHEG 432 Chemical Process Design 2 (DLE) 3 CHEG 401 Chemical Process Dynamics and Control 3 CHEG Elective 3 3 CHEG 445 Chemical Engineering Laboratory II 3 Technical Elective 3 3 CHEG Elective 2 3 Technical Elective 4 or CHEG Elective 4 3 Breadth Requirement Elective 5 3 Breadth Requirement Elective 6 3 15 15 Total Credit Hours 126 ( a ) If CHEM 333 is taken for two credits, CHEM 445 is not required.
    [Show full text]
  • Taking Reactive Distillation to the Next Level of Process Intensification, Chemical Engineering Transactions, 69, 553-558 DOI: 10.3303/CET1869093 554
    553 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 69, 2018 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Elisabetta Brunazzi, Eva Sorensen Copyright © 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-66-2; ISSN 2283-9216 DOI: 10.3303/CET1869093 Taking Reactive Distillation to the Next Level of Process Intensification Anton A. Kissa,b,*, Megan Jobsona a The University of Manchester, School of Chemical Engineering and Analytical Science, Centre for Process Integration, Sackville Street, The Mill, Manchester M13 9PL, United Kingdom b University of Twente, Sustainable Process Technology, PO Box 217, 7500 AE Enschede, The Netherlands [email protected] Reactive distillation (RD) is an efficient process intensification technique that integrates catalytic chemical reaction and distillation in a single apparatus. The process is also known as catalytic distillation when a solid catalyst is used. RD technology has many key advantages such as reduced capital investment and significant energy savings, as it can surpass equilibrium limitations, simplify complex processes, increase product selectivity and improve the separation efficiency. But RD is also constrained by thermodynamic requirements (related to volatility differences and heat of reaction), overlapping of the reaction and distillation operating conditions, and the availability of catalysts that are active, selective and with sufficient longevity. This paper is the first to provide insights into novel reactive distillation technologies that combine RD principles with other intensified distillation technologies – e.g. dividing-wall columns, cyclic distillation, HiGee distillation, and heat integrated distillation column – potentially leading to new processes and applications. 1. Introduction Reactive distillation (RD) is one of the best success stories of process intensification technology – developed since the early 1920s – that made a strong positive impact in the chemical process industry (CPI).
    [Show full text]
  • CHEMICAL REACTION ENGINEERING* Current Status and Future Directions
    [eJij9iviews and opinions CHEMICAL REACTION ENGINEERING* Current Status and Future Directions M. P. DUDUKOVIC and petrochemical industry provided a fertile ground Washington University for further development of reaction engineering con­ St. Louis, MO 63130 cepts. The final cornerstone of this new discipline was laid in 1957 by the First Symposium on Chemical HEMICAL REACTIONS have been used by man­ Reaction Engineering [3] which brought together and C kind since time immemorial to produce useful synthesized the European point of view. The Amer­ products such as wine, metals, etc. Nevertheless, the ican and European schools of thought were not identi­ unifying principles that today we call chemical reac­ cal, but in time they converged into the subject matter tion engineering were not developed until relatively a that we know today as chemical reaction engineering, short time ago. During the decade of the 1940's (not or CRE. The above chronology led to the establish­ even half a century ago!) a transition was made from ment of CRE as an accepted discipline over the span descriptive industrial chemistry to the conceptual un­ of a decade and a half. This does not imply that all the ification of reaction processes and reactor types. The principles important in CRE were discovered then. pioneering work in this area of industrial practice was The foundation for CRE had already been established done by Denbigh [1] in England. Then in 1947, by the early work of Frank-Kamenteski, Damkohler, Hougen and Watson [2] published the first textbook Zeldovitch, etc., but at that time they represented in the U.S.
    [Show full text]
  • Chemical Engineering (CHE) 1
    Chemical Engineering (CHE) 1 CHE 3113 Rate Operations II CHEMICAL ENGINEERING Prerequisites: CHE 3013, CHE 3333, and CHE 3473 with grades of "C" or better. (CHE) Description: Development and application of phenomenological and empirical models to the design and analysis of mass transfer and CHE 1112 Introduction to the Engineering of Coffee (LN) separations unit operations. Description: A non-mathematical introduction to the engineering aspects Credit hours: 3 of roasting and brewing coffee. Simple engineering concepts are used Contact hours: Lecture: 3 Contact: 3 to study methods for roasting and processing of coffee. The course will Levels: Undergraduate investigate techniques for brewing coffee such as a drip coffee, pour-over, Schedule types: Lecture French press, AeroPress, and espresso. Laboratory experiences focus on Department/School: Chemical Engineering roasting and brewing coffee to teach introductory engineering concepts CHE 3123 Chemical Reaction Engineering to both engineers and non-engineers. Prerequisites: CHE 3013, CHE 3333, and CHE 3473 with grades of "C" or Credit hours: 2 better. Contact hours: Lecture: 1 Lab: 2 Contact: 3 Description: Principles of chemical kinetics rate concepts and data Levels: Undergraduate treatment. Elements of reactor design principles for homogeneous Schedule types: Lab, Lecture, Combined lecture and lab systems; introduction to heterogeneous systems. Course previously Department/School: Chemical Engineering offered as CHE 4473. General Education and other Course Attributes: Scientific Investigation, Credit hours: 3 Natural Sciences Contact hours: Lecture: 3 Contact: 3 CHE 2033 Introduction to Chemical Process Engineering Levels: Undergraduate Prerequisites: CHEM 1515, ENSC 2213, and ENGR 1412 with grades of "C" Schedule types: Lecture or better and concurrent enrollment in MATH 2233 or MATH 3263.
    [Show full text]
  • Transport Phenomena: Mass Transfer
    Transport Phenomena Mass Transfer (1 Credit Hour) μ α k ν DAB Ui Uo UD h h Pr f Gr Re Le i o Nu Sh Pe Sc kc Kc d Δ ρ Σ Π ∂ ∫ Dr. Muhammad Rashid Usman Associate professor Institute of Chemical Engineering and Technology University of the Punjab, Lahore. Jul-2016 The Text Book Please read through. Bird, R.B. Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena. 2nd ed. John Wiley & Sons, Inc. Singapore. 2 Transfer processes For a transfer or rate process Rate of a quantity driving force Rate of a quantity area for the flow of the quantity 1 Rate of a quantity Area driving force resistance Rate of a quantity conductance Area driving force Flux of a quantity conductance driving force Conductance is a transport property. Compare the above equations with Ohm’s law of electrical 3 conductance Transfer processes change in the quanity Rate of a quantity change in time rate of the quantity Flux of a quantity area for flow of the quantity change in the quanity Gradient of a quantity change in distance 4 Transfer processes In chemical engineering, we study three transfer processes (rate processes), namely •Momentum transfer or Fluid flow •Heat transfer •Mass transfer The study of these three processes is called as transport phenomena. 5 Transfer processes Transfer processes are either: • Molecular (rate of transfer is only a function of molecular activity), or • Convective (rate of transfer is mainly due to fluid motion or convective currents) Unlike momentum and mass transfer processes, heat transfer has an added mode of transfer called as radiation heat transfer.
    [Show full text]
  • Modes of Mass Transfer Chapter Objectives
    MODES OF MASS TRANSFER CHAPTER OBJECTIVES - After you have studied this chapter, you should be able to: 1. Explain the process of molecular diffusion and its dependence on molecular mobility. 2. Explain the process of capillary diffusion 3. Explain the process of dispersion in a fluid or in a porous solid. 4. Understand the process of convective mass transfer as due to bulk flow added to diffusion or dispersion. 5. Explain saturated flow and unsaturated capillary flow in a porous solid 6. Have an idea of the relative rates of the different modes of mass transfer. 7. Explain osmotic flow. KEY TERMS diffusion, diffusivity, and. diffusion coefficient dispersion and dispersion coefficient hydraulic conductivity capillarity osmotic flow mass and molar flux Fick's law Darcy's law 1. A Primer on Porous Media Flow Physical Interpretation of Hydraulic Conductivity K and Permeability k Figure 1. Idealization of a porous media as bundle of tubes of varying diameter and tortuosity. Capillarity and Unsaturated Flow in a Porous Media Figure 2.Capillary attraction between the tube walls and the fluid causes the fluid to rise. Osmotic Flow in a Porous Media Figure 3.Osmotic flow from a dilute to a concentrated solution through a semi-permeable membrane. 2. Molecular Diffusion • In a material with two or more mass species whose concentrations vary within the material, there is tendency for mass to move. Diffusive mass transfer is the transport of one mass component from a region of higher concentration to a region of lower concentration. Physical interpretation of diffusivity Figure 4. Concentration profiles at different times from an instantaneous source placed at zero distance.
    [Show full text]
  • History of Chemical Engineering and Mass Transfer Operations
    Chapter 1 History of Chemical Engineering and Mass Transfer Operations A discussion on the field of chemical engineering is warranted before proceeding to some specific details regarding mass transfer operations (MTO) and the contents of this first chapter. A reasonable question to ask is: What is Chemical Engineering? An outdated, but once official definition provided by the American Institute of Chemical Engineers is: Chemical Engineering is that branch of engineering concerned with the development and application of manufacturing processes in which chemical or certain physical changes are involved. These processes may usually be resolved into a coordinated series of unit physical “operations” (hence part of the name of the chapter and book) and chemical processes. The work of the chemical engineer is concerned primarily with the design, construction, and operation of equipment and plants in which these unit operations and processes are applied. Chemistry, physics, and mathematics are the underlying sciences of chemical engineering, and economics is its guide in practice. The above definition was appropriate up until a few decades ago when the profession branched out from the chemical industry. Today, that definition has changed. Although it is still based on chemical fundamentals and physical principles, these prin- ciples have been de-emphasized in order to allow for the expansion of the profession to other areas (biotechnology, semiconductors, fuel cells, environment, etc.). These areas include environmental management, health and safety, computer applications, and economics and finance. This has led to many new definitions of chemical engineering, several of which are either too specific or too vague. A definition proposed here is simply that “Chemical Engineers solve problems”.
    [Show full text]
  • Development of a Pedagogical Model to Help Engineering Faculty Design Interdisciplinary Curricula
    International Journal of Teaching and Learning in Higher Education 2016, Volume 28, Number 3, 372-384 http://www.isetl.org/ijtlhe/ ISSN 1812-9129 Development of a Pedagogical Model to Help Engineering Faculty Design Interdisciplinary Curricula Maria Navarro, Timothy Foutz, Kerri Patrick Singer and Sidney Thompson Ray International Group University of Georgia The purpose of this study was to develop a model to help engineering faculty overcome the challenges they face when asked to design and implement interdisciplinary curricula. Researchers at a U.S. University worked with an Interdisciplinary Consultant Team and prepared a steering document with Guiding Principles and Essential Elements for the design, implementation, and evaluation of integrative curricula in engineering education. The team also developed exemplar materials (Integrative Learning Module) to provide a practical example and demonstrate how the tools provided could be used in the development of new curricula. The Guiding Principles, Essential Elements, and Integrative Learning Module were evaluated by faculty and students who provided feedback for their improvement. Faculty indicated that the tools provided were appropriate guidelines for faculty, but they indicated that the Integrative Learning Module was too long to be a manageable example. Students agreed about the need for more interactive, real-world applications of engineering concepts, but they expressed differences of opinion regarding how humanities and social sciences topics should be addressed in the engineering curriculum. Students who participated in a course modeling the Integrative Learning Module were satisfied with its use and learning outcomes. After the course, these students were able to explain the importance of problem definition, process, and disciplinary integration in engineering work.
    [Show full text]