Chapter 1 What Is a Ring?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Regular Matrix Semirings
Thai Journal of Mathematics Volume 7 (2009) Number 1 : 69{75 www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209 On Regular Matrix Semirings S. Chaopraknoi, K. Savettaseranee and P. Lertwichitsilp Abstract : A ring R is called a (von Neumann) regular ring if for every x 2 R; x = xyx for some y 2 R. It is well-known that for any ring R and any positive integer n, the full matrix ring Mn(R) is regular if and only if R is a regular ring. This paper examines this property on any additively commutative semiring S with zero. The regularity of S is defined analogously. We show that for a positive integer n, if Mn(S) is a regular semiring, then S is a regular semiring but the converse need not be true for n = 2. And for n ≥ 3, Mn(S) is a regular semiring if and only if S is a regular ring. Keywords : Matrix ring; Matrix semiring; Regular ring; Regular semiring. 2000 Mathematics Subject Classification : 16Y60, 16S50. 1 Introduction A triple (S; +; ·) is called a semiring if (S; +) and (S; ·) are semigroups and · is distributive over +. An element 0 2 S is called a zero of the semiring (S; +; ·) if x + 0 = 0 + x = x and x · 0 = 0 · x = 0 for all x 2 S. Note that every semiring contains at most one zero. A semiring (S; +; ·) is called additively [multiplicatively] commutative if x + y = y + x [x · y = y · x] for all x; y 2 S: We say that (S; +; ·) is commutative if it is both additively and multiplicatively commutative. -
1 Jun 2020 Flat Semimodules & Von Neumann Regular Semirings
Flat Semimodules & von Neumann Regular Semirings* Jawad Abuhlail† Rangga Ganzar Noegraha‡ [email protected] [email protected] Department of Mathematics and Statistics Universitas Pertamina King Fahd University of Petroleum & Minerals Jl. Teuku Nyak Arief 31261Dhahran,KSA Jakarta12220,Indonesia June 2, 2020 Abstract Flat modules play an important role in the study of the category of modules over rings and in the characterization of some classes of rings. We study the e-flatness for semimodules introduced by the first author using his new notion of exact sequences of semimodules and its relationships with other notions of flatness for semimodules over semirings. We also prove that a subtractive semiring over which every right (left) semimodule is e-flat is a von Neumann regular semiring. Introduction Semirings are, roughly, rings not necessarily with subtraction. They generalize both rings and distributive bounded lattices and have, along with their semimodules many applications in Com- arXiv:1907.07047v2 [math.RA] 1 Jun 2020 puter Science and Mathematics (e.g., [1, 2, 3]). Some applications can be found in Golan’s book [4], which is our main reference on this topic. A systematic study of semimodules over semirings was carried out by M. Takahashi in a series of papers 1981-1990. However, he defined two main notions in a way that turned out to be not natural. Takahashi’s tensor products [5] did not satisfy the expected Universal Property. On *MSC2010: Primary 16Y60; Secondary 16D40, 16E50, 16S50 Key Words: Semirings; Semimodules; Flat Semimodules; Exact Sequences; Von Neumann Regular Semirings; Matrix Semirings The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through projects No. -
Varieties of Quasigroups Determined by Short Strictly Balanced Identities
Czechoslovak Mathematical Journal Jaroslav Ježek; Tomáš Kepka Varieties of quasigroups determined by short strictly balanced identities Czechoslovak Mathematical Journal, Vol. 29 (1979), No. 1, 84–96 Persistent URL: http://dml.cz/dmlcz/101580 Terms of use: © Institute of Mathematics AS CR, 1979 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 29 (104) 1979, Praha VARIETIES OF QUASIGROUPS DETERMINED BY SHORT STRICTLY BALANCED IDENTITIES JAROSLAV JEZEK and TOMAS KEPKA, Praha (Received March 11, 1977) In this paper we find all varieties of quasigroups determined by a set of strictly balanced identities of length ^ 6 and study their properties. There are eleven such varieties: the variety of all quasigroups, the variety of commutative quasigroups, the variety of groups, the variety of abelian groups and, moreover, seven varieties which have not been studied in much detail until now. In Section 1 we describe these varieties. A survey of some significant properties of arbitrary varieties is given in Section 2; in Sections 3, 4 and 5 we assign these properties to the eleven varieties mentioned above and in Section 6 we give a table summarizing the results. 1. STRICTLY BALANCED QUASIGROUP IDENTITIES OF LENGTH £ 6 Quasigroups are considered as universal algebras with three binary operations •, /, \ (the class of all quasigroups is thus a variety). -
Dedekind Domains
Dedekind Domains Mathematics 601 In this note we prove several facts about Dedekind domains that we will use in the course of proving the Riemann-Roch theorem. The main theorem shows that if K=F is a finite extension and A is a Dedekind domain with quotient field F , then the integral closure of A in K is also a Dedekind domain. As we will see in the proof, we need various results from ring theory and field theory. We first recall some basic definitions and facts. A Dedekind domain is an integral domain B for which every nonzero ideal can be written uniquely as a product of prime ideals. Perhaps the main theorem about Dedekind domains is that a domain B is a Dedekind domain if and only if B is Noetherian, integrally closed, and dim(B) = 1. Without fully defining dimension, to say that a ring has dimension 1 says nothing more than nonzero prime ideals are maximal. Moreover, a Noetherian ring B is a Dedekind domain if and only if BM is a discrete valuation ring for every maximal ideal M of B. In particular, a Dedekind domain that is a local ring is a discrete valuation ring, and vice-versa. We start by mentioning two examples of Dedekind domains. Example 1. The ring of integers Z is a Dedekind domain. In fact, any principal ideal domain is a Dedekind domain since a principal ideal domain is Noetherian integrally closed, and nonzero prime ideals are maximal. Alternatively, it is easy to prove that in a principal ideal domain, every nonzero ideal factors uniquely into prime ideals. -
Subset Semirings
University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2013 Subset Semirings Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy [email protected] Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebraic Geometry Commons, Analysis Commons, and the Other Mathematics Commons Recommended Citation W.B. Vasantha Kandasamy & F. Smarandache. Subset Semirings. Ohio: Educational Publishing, 2013. This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Subset Semirings W. B. Vasantha Kandasamy Florentin Smarandache Educational Publisher Inc. Ohio 2013 This book can be ordered from: Education Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: 1-866-880-5373 Copyright 2013 by Educational Publisher Inc. and the Authors Peer reviewers: Marius Coman, researcher, Bucharest, Romania. Dr. Arsham Borumand Saeid, University of Kerman, Iran. Said Broumi, University of Hassan II Mohammedia, Casablanca, Morocco. Dr. Stefan Vladutescu, University of Craiova, Romania. Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/eBooks-otherformats.htm ISBN-13: 978-1-59973-234-3 EAN: 9781599732343 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One INTRODUCTION 7 Chapter Two SUBSET SEMIRINGS OF TYPE I 9 Chapter Three SUBSET SEMIRINGS OF TYPE II 107 Chapter Four NEW SUBSET SPECIAL TYPE OF TOPOLOGICAL SPACES 189 3 FURTHER READING 255 INDEX 258 ABOUT THE AUTHORS 260 4 PREFACE In this book authors study the new notion of the algebraic structure of the subset semirings using the subsets of rings or semirings. -
Noncommutative Unique Factorization Domainso
NONCOMMUTATIVE UNIQUE FACTORIZATION DOMAINSO BY P. M. COHN 1. Introduction. By a (commutative) unique factorization domain (UFD) one usually understands an integral domain R (with a unit-element) satisfying the following three conditions (cf. e.g. Zariski-Samuel [16]): Al. Every element of R which is neither zero nor a unit is a product of primes. A2. Any two prime factorizations of a given element have the same number of factors. A3. The primes occurring in any factorization of a are completely deter- mined by a, except for their order and for multiplication by units. If R* denotes the semigroup of nonzero elements of R and U is the group of units, then the classes of associated elements form a semigroup R* / U, and A1-3 are equivalent to B. The semigroup R*jU is free commutative. One may generalize the notion of UFD to noncommutative rings by taking either A-l3 or B as starting point. It is obvious how to do this in case B, although the class of rings obtained is rather narrow and does not even include all the commutative UFD's. This is indicated briefly in §7, where examples are also given of noncommutative rings satisfying the definition. However, our principal aim is to give a definition of a noncommutative UFD which includes the commutative case. Here it is better to start from A1-3; in order to find the precise form which such a definition should take we consider the simplest case, that of noncommutative principal ideal domains. For these rings one obtains a unique factorization theorem simply by reinterpreting the Jordan- Holder theorem for right .R-modules on one generator (cf. -
Derivations of a Matrix Ring Containing a Subring of Triangular Matrices S
ISSN 1066-369X, Russian Mathematics (Iz. VUZ), 2011, Vol. 55, No. 11, pp. 18–26. c Allerton Press, Inc., 2011. Original Russian Text c S.G. Kolesnikov and N.V. Mal’tsev, 2011, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2011, No. 11, pp. 23–33. Derivations of a Matrix Ring Containing a Subring of Triangular Matrices S. G. Kolesnikov1* andN.V.Mal’tsev2** 1Institute of Mathematics, Siberian Federal University, pr. Svobodnyi 79, Krasnoyarsk, 660041 Russia 2Institute of Core Undergraduate Programs, Siberian Federal University, 26 ul. Akad. Kirenskogo 26, Krasnoyarsk, 660041 Russia Received October 22, 2010 Abstract—We describe the derivations (including Jordan and Lie ones) of finitary matrix rings, containing a subring of triangular matrices, over an arbitrary associative ring with identity element. DOI: 10.3103/S1066369X1111003X Keywords and phrases: finitary matrix, derivations of rings, Jordan and Lie derivations of rings. INTRODUCTION An endomorphism ϕ of an additive group of a ring K is called a derivation if ϕ(ab)=ϕ(a)b + aϕ(b) for any a, b ∈ K. Derivations of the Lie and Jordan rings associated with K are called, respectively, the Lie and Jordan derivations of the ring K; they are denoted, respectively, by Λ(K) and J(K). (We obtain them by replacing the multiplication in K with the Lie multiplication a ∗ b = ab − ba and the Jordan one a ◦ b = ab + ba, respectively.) In 1957 I. N. Herstein proved [1] that every Jordan derivation of a primary ring of characteristic =2 is a derivation. His theorem was generalized by several authors ([2–9] et al.) for other classes of rings and algebras. -
SOME ALGEBRAIC DEFINITIONS and CONSTRUCTIONS Definition
SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS Definition 1. A monoid is a set M with an element e and an associative multipli- cation M M M for which e is a two-sided identity element: em = m = me for all m M×. A−→group is a monoid in which each element m has an inverse element m−1, so∈ that mm−1 = e = m−1m. A homomorphism f : M N of monoids is a function f such that f(mn) = −→ f(m)f(n) and f(eM )= eN . A “homomorphism” of any kind of algebraic structure is a function that preserves all of the structure that goes into the definition. When M is commutative, mn = nm for all m,n M, we often write the product as +, the identity element as 0, and the inverse of∈m as m. As a convention, it is convenient to say that a commutative monoid is “Abelian”− when we choose to think of its product as “addition”, but to use the word “commutative” when we choose to think of its product as “multiplication”; in the latter case, we write the identity element as 1. Definition 2. The Grothendieck construction on an Abelian monoid is an Abelian group G(M) together with a homomorphism of Abelian monoids i : M G(M) such that, for any Abelian group A and homomorphism of Abelian monoids−→ f : M A, there exists a unique homomorphism of Abelian groups f˜ : G(M) A −→ −→ such that f˜ i = f. ◦ We construct G(M) explicitly by taking equivalence classes of ordered pairs (m,n) of elements of M, thought of as “m n”, under the equivalence relation generated by (m,n) (m′,n′) if m + n′ = −n + m′. -
Right Ideals of a Ring and Sublanguages of Science
RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance. -
Problems in Abstract Algebra
STUDENT MATHEMATICAL LIBRARY Volume 82 Problems in Abstract Algebra A. R. Wadsworth 10.1090/stml/082 STUDENT MATHEMATICAL LIBRARY Volume 82 Problems in Abstract Algebra A. R. Wadsworth American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell (Chair) Erica Flapan Serge Tabachnikov 2010 Mathematics Subject Classification. Primary 00A07, 12-01, 13-01, 15-01, 20-01. For additional information and updates on this book, visit www.ams.org/bookpages/stml-82 Library of Congress Cataloging-in-Publication Data Names: Wadsworth, Adrian R., 1947– Title: Problems in abstract algebra / A. R. Wadsworth. Description: Providence, Rhode Island: American Mathematical Society, [2017] | Series: Student mathematical library; volume 82 | Includes bibliographical references and index. Identifiers: LCCN 2016057500 | ISBN 9781470435837 (alk. paper) Subjects: LCSH: Algebra, Abstract – Textbooks. | AMS: General – General and miscellaneous specific topics – Problem books. msc | Field theory and polyno- mials – Instructional exposition (textbooks, tutorial papers, etc.). msc | Com- mutative algebra – Instructional exposition (textbooks, tutorial papers, etc.). msc | Linear and multilinear algebra; matrix theory – Instructional exposition (textbooks, tutorial papers, etc.). msc | Group theory and generalizations – Instructional exposition (textbooks, tutorial papers, etc.). msc Classification: LCC QA162 .W33 2017 | DDC 512/.02–dc23 LC record available at https://lccn.loc.gov/2016057500 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. -
6. PID and UFD Let R Be a Commutative Ring. Recall That a Non-Unit X ∈ R Is Called Irreducible If X Cannot Be Written As A
6. PID and UFD Let R be a commutative ring. Recall that a non-unit x R is called irreducible if x cannot be written as a product of two non-unit elements of R i.e.∈x = ab implies either a is an unit or b is an unit. Also recall that a domain R is called a principal ideal domain or a PID if every ideal in R can be generated by one element, i.e. is principal. 6.1. Lemma. (a) Let R be a commutative domain. Then prime elements in R are irreducible. (b) Let R be a PID. Then an irreducible in R is a prime element. Proof. (a) Let (p) be a prime ideal in R. If possible suppose p = uv.Thenuv (p), so either u (p)orv (p), if u (p), then u = cp,socv = 1, that is v is an unit. Similarly,∈ if v (p), then∈ u is an∈ unit. ∈ ∈(b) Let p R be irreducible. Suppose ab (p). Since R is a PID, the ideal (a, p)hasa generator, say∈ x, that is, (x)=(a, p). Then ∈p (x), so p = xu for some u R. Since p is irreducible, either u or x must be an unit and we∈ consider these two cases seperately:∈ In the first case, when u is an unit, then x = u−1p,soa (x) (p), that is, p divides a.Inthe second case, when x is a unit, then (a, p)=(1).So(∈ ab,⊆ pb)=(b). But (ab, pb) (p). So (b) (p), that is p divides b. -
Group Matrix Ring Codes and Constructions of Self-Dual Codes
Group Matrix Ring Codes and Constructions of Self-Dual Codes S. T. Dougherty University of Scranton Scranton, PA, 18518, USA Adrian Korban Department of Mathematical and Physical Sciences University of Chester Thornton Science Park, Pool Ln, Chester CH2 4NU, England Serap S¸ahinkaya Tarsus University, Faculty of Engineering Department of Natural and Mathematical Sciences Mersin, Turkey Deniz Ustun Tarsus University, Faculty of Engineering Department of Computer Engineering Mersin, Turkey February 2, 2021 arXiv:2102.00475v1 [cs.IT] 31 Jan 2021 Abstract In this work, we study codes generated by elements that come from group matrix rings. We present a matrix construction which we use to generate codes in two different ambient spaces: the matrix ring Mk(R) and the ring R, where R is the commutative Frobenius ring. We show that codes over the ring Mk(R) are one sided ideals in the group matrix k ring Mk(R)G and the corresponding codes over the ring R are G - codes of length kn. Additionally, we give a generator matrix for self- dual codes, which consist of the mentioned above matrix construction. 1 We employ this generator matrix to search for binary self-dual codes with parameters [72, 36, 12] and find new singly-even and doubly-even codes of this type. In particular, we construct 16 new Type I and 4 new Type II binary [72, 36, 12] self-dual codes. 1 Introduction Self-dual codes are one of the most widely studied and interesting class of codes. They have been shown to have strong connections to unimodular lattices, invariant theory, and designs.