Linear Algebraic Groups and K-theory Notes in collaboration with Hinda Hamraoui, Casablanca Ulf Rehmann∗ Department of Mathematics, University of Bielefeld, Bielefeld, Germany Lectures given at the School on Algebraic K-theory and its Applications Trieste, 14 - 25 May 2007 LNS0823002 ∗
[email protected] Contents Introduction 83 1 The group structure of SLn over a field 85 2 Linear algebraic groups over fields 93 3 Root systems, Chevalley groups 100 4 K-theoretic results related to Chevalley groups 108 5 Structure and classification of almost simple 113 algebraic groups 6 Further K-theoretic results for simple algebraic groups 119 References 128 Linear Algebraic Groups and K-theory 83 Introduction 1 The functors K1, K2 for a commutative field k are closely related to the theory of the general linear group via exact sequences of groups 1 SL(k) GL(k) det K (k) 1, → → → 1 → 1 K (k) St(k) SL(k) 1. → 2 → → → Here the groups GL(k), SL(k) are inductive limits of the well known matrix groups of the general and special linear group over k with n rows and ∗ columns: GL(k) = lim−→ GLn(k), SL(k) = lim−→ SLn(k), and K1(k) = k , the n n ∼ latter denoting the multiplicative group of k. The groups SLn(k), SL(k) are all perfect, i.e., equal to their commutator subgroups,2. It is known that any perfect group G has a universal central extension G˜, i.e., there is an exact sequence of groups 1 A G˜ G 1 → → → → such that A embeds into the center of G˜, and such that any such central extension factors from the above sequence.