One-Step Synthesis, Characterization and Oxidative Desulfurization of 12-Tungstophosphoric Heteropolyanions Immobilized on Amino Functionalized SBA-15

Total Page:16

File Type:pdf, Size:1020Kb

One-Step Synthesis, Characterization and Oxidative Desulfurization of 12-Tungstophosphoric Heteropolyanions Immobilized on Amino Functionalized SBA-15 Pham, X. N., Tran, D. L., Pham, T. D., Nguyen, Q. M., Thi, V. T. T., & Van, H. D. (2018). One-step synthesis, characterization and oxidative desulfurization of 12-tungstophosphoric heteropolyanions immobilized on amino functionalized SBA-15. Advanced Powder Technology, 29(1), 58-65. https://doi.org/10.1016/j.apt.2017.10.011 Peer reviewed version License (if available): CC BY-NC-ND Link to published version (if available): 10.1016/j.apt.2017.10.011 Link to publication record in Explore Bristol Research PDF-document This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Elsevier at DOI: 10.1016/j.apt.2017.10.011. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ APT 1754 No. of Pages 8, Model 5G 31 October 2017 Advanced Powder Technology xxx (2017) xxx–xxx 1 Contents lists available at ScienceDirect Advanced Powder Technology journal homepage: www.elsevier.com/locate/apt 2 Original Research Paper 7 4 One-step synthesis, characterization and oxidative desulfurization 8 5 of 12-tungstophosphoric heteropolyanions immobilized on amino 6 functionalized SBA-15 a,⇑ a a b b 9 Xuan Nui Pham , Dinh Linh Tran , Tuan Dat Pham , Quang Man Nguyen , Van Thi Tran Thi , c 10 Huan Doan Van 11 a Department of Chemical Engineering, Hanoi University of Mining and Geology, 18 Pho Vien, Duc Thang, Bac Tu Liem District, Hanoi, Viet Nam 12 b Department of Chemistry, Hue Science College, Hue University, 77 Nguyen Hue Str., Hue City, Viet Nam 13 c Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TH, United Kingdom 1415 16 article info abstract 1830 19 3À Article history: Keggin-type 12-tungstophosphoric [PW12O40] heteropolyanions were successfully immobilized onto 31 20 Received 14 July 2017 mesoporous material surface of SBA-15 functionalized using the (3-aminopropyl)triethoxysilane 32 21 Accepted 14 October 2017 (APTES) synthesized by one-pot co-condensation method, also called one-step synthesis. The synthesized 33 22 Available online xxxx À + PW -NH3-SBA-15 catalyst was characterized by XRD, N2 adsorption–desorption, FT-IR, TGA, SEM, TEM, 34 EDS, XPS methods. The results indicated that ordered hexagonal mesostructure for SBA-15 support 35 23 Keywords: was still maintained after being functionalized with amine groups, while the specific surface area of 36 24 Oxidative desulfurization SBA-15 was decreased. The active species of phosphotungstic acid H PW O (HPW) retained its 37 25 Dibenzothiophene 3 12 40 Keggin structure of the heteropolyanions on the amine-modified SBA-15. The PWÀ–+H N–SBA–15 cata- 38 26 Heteropoly acid 3 27 Functional mesoporous materials lyst exhibited a high catalytic activity for oxidative desulfurization process of sulfur-containing model 39 28 One-pot synthesis fuel. The dibenzothiophene (DBT) conversion of almost 100% was achieved with reaction conditions of 40 29 40 mg of catalyst dosage, 2 mL of hydrogen peroxide, 90 °C of reaction temperature, and 120 min of reac- 41 tion time. 42 Ó 2017 Published by Elsevier B.V. on behalf of The Society of Powder Technology Japan. All rights 43 reserved. 44 45 46 47 48 1. Introduction and aliphatic hydrocarbons, it has exhibited some inherent prob- 64 lems in treating sulfur-containing aromatic hydrocarbon com- 65 49 Organic compounds containing sulfur in fuels are the major pounds such as dibenzothiophene (DBT), benzothiophene (BT) 66 50 source of pollution. Emission of SOx from vehicle engine causes and their derivatives as the existence of benzene rings in molecular 67 51 acid rain, engine and pipeline corrosions, and catalysts poison in enhances their aromatic [3–5]. 68 52 the catalytic processes. Hence, the stringency of environmental In order to overcome this drawback, many other technologies 69 53 regulations drives the maximum reduction of sulfur content in have been applied such as oxidative desulfurization (ODS) [6–8], 70 54 fuel. For example, that content in the diesel in Europe and the adsorptive desulfurization [9], extraction by ionic liquids [10,11], 71 55 United States must be reduced to less than 10 and 15 ppmw, biodesulfurization [12]. 72 56 respectively [1]. To meet this requirement, many methods have Up to now, there are many studies on the use of appropriate 73 57 been applied in the field of deep – desulfurization. catalysts for sulfur removal by the oxidation [13–19]. Among the 74 58 Currently, conventional hydrodesulfurization (HDS) technology oxidation methods applied, oxidative desulfurization on the base 75 59 has been applied to remove sulfur from the liquid fuel. However, of tungsten as active species is one of the promising ways comple- 76 60 this technology requires the strict operating conditions, and takes ment HDS due to its mild operating conditions e.g.atmospheric 77 61 place in the reactor at high temperature (300–400 °C), high pres- pressure, no consumption of hydrogen, and high efficiency. Under 78 62 sure (3–6 Mpa), and in the presence of hydrogen [2]. Although it this process, sulfur-containing compounds can be selectively oxi- 79 63 is effective method for the removal of sulfur-containing cyclic dized to sulfoxides or sulfones in the presence of hydrogen perox- 80 ide as oxidative agent. The formation of sulfone and sulfoxide 81 compounds with the polar bonds of sulfur-oxygen (S@O), resulting 82 ⇑ Corresponding author. E-mail address: [email protected] (X.N. Pham). https://doi.org/10.1016/j.apt.2017.10.011 0921-8831/Ó 2017 Published by Elsevier B.V. on behalf of The Society of Powder Technology Japan. All rights reserved. Please cite this article in press as: X.N. Pham et al., One-step synthesis, characterization and oxidative desulfurization of 12-tungstophosphoric heteropolyanions immobilized on amino functionalized SBA-15, Advanced Powder Technology (2017), https://doi.org/10.1016/j.apt.2017.10.011 APT 1754 No. of Pages 8, Model 5G 31 October 2017 2 X.N. Pham et al. / Advanced Powder Technology xxx (2017) xxx–xxx 83 in their solubility in polar solvents and their extractability in non- °C, the final mixture was transferred to a Teflon-lined stainless 143 84 polar organic solvent [20]. steel atoclave for hydrothermal synthesis at 110 °C for 24 h. The 144 85 Recently, several research groups have developed silica sup- solid product synthesized was collected, washed by distilled water, 145 86 ported active tungsten species for oxidative desulfurization, such dried overnight at 80 °C, and calcined at 550 °C for 6 h with the 146 87 as W-MCM-41 [15], silica supported H3PMo12O40 [19] synthesized heating rate of 5 °C/min. The obtained sample was designated as 147 88 by direct one-pot method, MCM-41 supported (Bu4N)4H3(PW11O39) H2N-SBA-15 (M4). 148 89 [16], silica supported [(n-C8H17)3NCH3]2W2O11] [21]. Li et al. [22] 90 reported the using decatungstates [(C4H9)4N]4W10O32 in the ionic 2.3. The immobilization of HPW onto the NH2–SBA-15 silica support 149 À + 91 liquid of [Bmim]PF6 catalyzed for deep oxidative desulfurization (PW H3N -SBA-15) 150 92 of fuel oils. 93 Keggin structure type 12-tungstophosphoric heteropolyacid To increase the immobilization of HPW onto surface of H2N- 151 94 H3PW12O40 (HPW) is promising catalytic material because their SBA-15 material, in this study, triflic acid was used as the reagent 152 + 95 superacid properties with strong Bronsted acid sites, high proton protonating amine groups to create positively charged NH3 groups 153 96 mobility, redox activity, high thermal stability, and environmental on the support. As the result, there is the formation of electrostatic 154 + À 97 friendliness [23–25]. Polyoxometalate catalyst has been used for interaction between NH3 of support surface with PW of HPW. 155 98 oxidative desulfurization [26]. However, pure HPW materials as Immobilization of HPW on H2N-SBA-15 silica support was carried 156 99 the catalysts are hindered by their low specific surface area out as follows [33]:1gofH2N-SBA-15 was suspended in 50 mL of 157 100 (<10 m2/g), and high solubility in polar solvents in reaction system acetonitrile solvent, then 4 mL of triflic acid solution was added 158 101 which leads to the difficulty of catalysts recovery [27]. into the reaction mixture and refluxed at 80 °C for 5 h. After that 159 102 Immobilization of HPW by supporting HPW onto a solid porous the solid product was filtered, and was washed with acetonitril 160 103 substrate such as amorphous silica [28–30], carbon nanotubes [31] to remove the unreacted triflic acid. The acidified H2N-SBA-15 161 + 104 etc. is one of effective methods to increase the surface area, and to obtained was designated as H3N-SBA-15. Immobilization of 162 105 separate and recycle the catalysts [32]. Among the porous sub- HPW catalyst on H2N-SBA-15 support was performed by adding 163 + 106 strates, mesoporous SBA-15 is very interesting material due to its of 0.7 g of H3N-SBA-15 into mixture containing 50 mL methanol 164 107 large specific surface area allowing exellent dispersion of catalytic and 0.3 g of HPW. The mixture was refluxed at 65 °C for 5 h before 165 108 active sites. Further, the large pore size of that material can aid the being filtered to obtain solid product, which was dried under vac- 166 109 movement of bulky organic molecules in and out of the pores.
Recommended publications
  • Synergistic Effect of Acids and HFIP on Friedel-Crafts Reactions of Alcohols and Cyclopropanes Vuk Vukovic
    Synergistic effect of acids and HFIP on Friedel-Crafts reactions of alcohols and cyclopropanes Vuk Vukovic To cite this version: Vuk Vukovic. Synergistic effect of acids and HFIP on Friedel-Crafts reactions of alcohols andcy- clopropanes. Organic chemistry. Université de Strasbourg, 2018. English. NNT : 2018STRAF068. tel-02918037 HAL Id: tel-02918037 https://tel.archives-ouvertes.fr/tel-02918037 Submitted on 20 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES (ED 222) Laboratoire de Catalyse Chimique Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006) THÈSE de DOCTORAT présentée par Vuk VUKOVIĆ soutenue le 14 décembre 2018 pour obtenir le grade de : Docteur de l’Université de Strasbourg Discipline/ Spécialité : Chimie organique Synergistic Effect of Acids and HFIP on Friedel-Crafts Reactions of Alcohols and Cyclopropanes THESE dirigée par : Prof. MORAN Joseph Université de Strasbourg RAPPORTEURS : Prof. THIBAUDEAU Sébastien Université de Poitiers Prof. GANDON Vincent Université Paris-Sud 11 EXAMINATEUR: Dr WENCEL-DELORD Joanna Université de Strasbourg Synergistic Effect of Acids and HFIP on Friedel-Crafts Reactions of Alcohols and Cyclopropanes Table of Contents page Table of Contents I Acknowledgement and Dedication V List of Abbreviations XIII Résumé XVII Chapter 1.
    [Show full text]
  • WO 2015/014733 Al 5 February 2015 (05.02.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2015/014733 Al 5 February 2015 (05.02.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 233/64 (2006.01) C07D 403/06 (2006.01) kind of national protection available): AE, AG, AL, AM, A 43/40 (2006.01) C07D 239/26 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A 43/50 (2006.01) C07D 417/06 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A0 43/54 (2006.01) C07D 249/08' (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A0 43/653 (2006.01) C07D 213/57 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, C07D 401/06 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/EP2014/065994 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (22) International Filing Date: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 25 July 2014 (25.07.2014) ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 2256/DEL/2013 29 July 2013 (29.07.2013) IN TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (71) Applicant: SYNGENTA PARTICIPATIONS AG MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).
    [Show full text]
  • Copper(II)–Acid Co-Catalyzed Intermolecular Substitution of Electron-Rich Aromatics with Diazoesters
    1 Tetrahedron Letters journal homepage: www.elsevier.com Copper(II)–acid co-catalyzed intermolecular substitution of electron-rich aromatics with diazoesters Eiji Tayama, Moe Ishikawa, Hajime Iwamoto, and Eietsu Hasegawa Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan ARTICLE INFO ABSTRACT Article history: The intermolecular aromatic substitution of N,N-dialkylanilines and alkoxybenzenes with Received diazoesters is shown to proceed in the presence of catalytic amounts of both copper(II) salt and Received in revised form acid (Lewis or Brønsted). This method is a mild and rare metal-free C–C bond formation Accepted reaction between aromatic (sp2) and aliphatic (sp3) carbons. Available online 2009 Elsevier Ltd. All rights reserved. Keywords: Aromatic substitution Co-catalysis Synthetic method Arene Diazo compound Transition metal-catalyzed aromatic substitution using - acetylacetonate [Cu(acac)2] resulted in a lower yield (entry 3). diazocarbonyl compounds (formally, an aromatic C–H insertion) These results suggest that a combination of a copper(II) salt is a powerful and efficient synthetic method that enables the (Catalyst A) and a common Lewis acid (Catalyst B) might also formation of C–C bonds between aromatic (sp2) and aliphatic catalyze the intermolecular aromatic substitution. Thus, we (sp3) carbons under mild conditions.1 These are several well- attempted the reaction in the presence of a co-catalyst derived studied examples of successful intramolecular benzofused-ring from 1 mol% Cu(acac)2 and 1 mol% boron trifluoride diethyl formations catalyzed by rhodium complexes; however, examples etherate, (BF3•OEt2) (entry 4). As expected, the reaction of the intermolecular version are rare,2 except for some reactions afforded the desired product with a yield similar to the original 3 with heteroaromatic compounds.
    [Show full text]
  • Supplementary Information
    Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Supplementary issues. Three consecutive cyclic runs were carried out, with the first two cycles up to 140 °C and the Information third cycle increasing to 300 °C. The entropy changes (ΔS) reported in Table 1 are calculated Sample preparation from the enthalpy change (ΔH) occurring at each transition, which is obtained from the area under the DSC transition peaks. The DSC traces were [Choline][triflate] was made by the neutralization analyzed using the TA instruments universal reaction of triflic acid with Choline hydroxide. analysis 2000 program. The enthalpies and entropies Typically the synthesis involves a drop wise reported are based on the quantity of plastic crystal addition of aqueous solution of 1 mole of triflic acid in each of the doped samples, i.e by subtracting the (Aldrich) (5.9g) to 1 mole of 20% aqueous Choline amount of added acid in the calculations. hydroxide (Aldrich) solution (23.9g) in an ice bath and the contents were stirred for about 2 hours at room temperature. The neutralized product was then Conductivity Measurements treated with activated charcoal for decolourization. The solvent was removed by distillation and the The ionic conductivities of all samples were final product was dried under vacuum at 60 °C for measured using AC impedance spectroscopy using a two days and the yield of pale yellow crystalline frequency response analyzer (FRA, Solartron, product was found to be 96%. 1296), impedance software version 3.2.0. The conductivities were obtained by measurement of the complex impedance spectra between 10 MHz and 0.1 Hz on a Solartron SI 1296 Dielectric interface Identification of compound and Solartron SI 1270 frequency response analyzer using two shielded BNC connectors.
    [Show full text]
  • Trifluoromethanesulfonic Acid As Acylation Catalyst: Special Feature for C- And/Or O-Acylation Reactions
    Review Trifluoromethanesulfonic Acid as Acylation Catalyst: Special Feature for C- and/or O-Acylation Reactions Zetryana Puteri Tachrim, Lei Wang, Yuta Murai, Takuma Yoshida, Natsumi Kurokawa, Fumina Ohashi, Yasuyuki Hashidoko and Makoto Hashimoto * Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; [email protected] (Z.P.T.); [email protected] (L.W.); [email protected] (Y.M.); [email protected] (T.Y.); [email protected] (N.K.); [email protected] (F.O.); [email protected] (Y.H.) * Correspondence: [email protected]; Tel.: +81-11-7063849 Academic Editor: Andreas Pfaltz Received: 6 December 2016; Accepted: 18 January 2017; Published: 28 January 2017 Abstract: Trifluoromethanesulfonic acid (TfOH) is one of the superior catalysts for acylation. The catalytic activity of TfOH in C- and/or O-acylation has broadened the use of various substrates under mild and neat or forced conditions. In this review, the salient catalytic features of TfOH are summarized, and the unique controllability of its catalytic activity in the tendency of C-acylation and/or O-acylation is discussed. Keywords: trifluoromethanesulfonic acid; triflic acid; Friedel–Crafts acylation; Fries rearrangement; ester condensation; O-acylation; C-acylation 1. Introduction The widely used C-acylation, Friedel–Crafts acylation [1,2] and Fries rearrangement [2] of aromatic compounds are efficient methods that result in satisfactory product yields. The fundamental feature of these reactions is the use of a homogeneous or heterogeneous Lewis or Brønsted acid that catalyzes the reaction of the acylating agent with the corresponding substrates.
    [Show full text]
  • Fluorine Gas F Is the Most Powerful Oxidizing Agent Known, Reacting
    Fluorine gas F2 is the most powerful oxidizing agent known, reacting with practically all organic and inorganic substances. Except compounds formed already by its reaction Fluorine ignites on contact with ammonia, phosphorus, silicon, sulfur, copper wire, acetone etc and many organic and inorganic compounds. It reacts with most compounds and often, violently. Fluorine gas is corrosive to exposed tissues and to the upper and lower respiratory tract. It can penetrate deeply into body tissues and will continue to exert tissue damaging effects unless neutralized. Fluorine reacts violently and decomposes to hydrofluoric acid on contact with moisture. The name fluorine was coined by the French chemist amperé as ‘le fluor’ after its ore fluorspar. •Since F2 reacts with almost all the elements except a few rare gases, storage and transport of F2 gas was also a challenge. •Teflon is the preferred gasket material when working with fluorine gas. •Equipments have to be kept dry as F2 oxidizes water giving a mixture of O2, O3 and HF. •The reaction between metals and fluorine is relatively slow at room temperature, but becomes vigorous and self-sustaining at elevated temperatures. •Fluorine can be stored in steel cylinders that have passivated interiors, or nickel or Monel metal cylinders at temperatures below 200 °C (392 °F). •Frequent passivation, along with the strict exclusion of water and greases, must be undertaken. •In the laboratory, glassware may carry fluorine gas under low pressure and anhydrous conditions Attempts to isolate fluorine gas (F2) was one of the toughest tasks handled by chemists. Scientists who were maimed and mauled to death by the tiger of chemistry F2 Humphrey Davy of England: poisoned, recovered.
    [Show full text]
  • Wo 2U11/1U4724 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 September 2011 (01.09.2011) WO 2U11/1U4724 A2 (51) International Patent Classification: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, C07C 303/02 (2006.01) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (21) International Application Number: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, PCT/IN20 11/000106 SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (22) International Filing Date: TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 23 February 201 1 (23.02.201 1) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (26) Publication Language: English ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 522/MUM/2010 26 February 2010 (26.02.2010) IN EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (72) Inventor; and SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (71) Applicant : GHARDA, Keki Hormusji [IN/IN]; Gharda GW, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Appendix a Reports the Determination Regarding Whether Or Not Domestic
    APPENDIX A DETERMINATIONS OF DOMESTIC PRODUCTION AND OBJECTION FROM DOMESTIC PRODUCER Appendix A reports the determination regarding whether or not domestic production of articles that are the subject of petitions exists and whether a domestic producer of the article objects to the petition. The information is in tabular format of four columns listing the USITC-assigned petition number (“Petition Number”), the petition article description (“Article Description”), the determination on whether domestic production exists (“Existence of Domestic Production”), and whether a domestic producer objected to the petition (“Objection from a Domestic Producer”). Petition-specific findings begin on the following page, A-2. * * * * * A‐1 APPENDIX A DETERMINATIONS OF DOMESTIC PRODUCTION AND OBJECTION FROM DOMESTIC PRODUCER Objection Existence of Petition from a Article Description Domestic Number Domestic Production Producer Mixtures of benzamide, 2‐[[[[(4,6‐dimethoxy‐2‐pyrimidinyl)‐amino]carbonyl]amino]sulfonyl]‐4‐ 1900007 (formylamino) ‐N,N‐ methyl‐ (Foramsulfuron) (CAS No. 173159‐57‐4) and application adjuvants (provided No No for in subheading 3808.93.15) (RS)‐α‐cyano‐4‐fluoro‐3‐phenoxybenzyl(1RS,3RS;1RS,3SR)‐3‐ (2,2‐dichlorovinyl)‐2,2‐ 1900008 dimethylcyclopropanecarboxylate (β‐Cyfluthrin) (CAS No. 68359‐37‐5) (provided for in subheading No No 2926.90.30) 1900009 Sodium Fluorosilicate; Sodium Silicofluoride. Sodium Hexafluorosilicate Yes Yes Flame resistant viscose rayon fiber suitable for yarn spinning with minimum fiber tenacity of 25 cN/tex,
    [Show full text]
  • Preparation of O-Pivaloyl Hydroxylamine Triflic Acid
    Preparation of O-Pivaloyl Hydroxylamine Triflic Acid Szabolcs Makai, Eric Falk, and Bill Morandi*1 Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland Checked by Zhaobin Han and Kuiling Ding pivaloyl chloride, NEt3 O A. NHBoc CH2Cl2, 0 °C to 23 °C NHBoc HO O 1 2 triflic acid O O O CF B. Et2O, 0 °C to 23 °C S 3 NHBoc NH3 O O O O 2 3 Procedure (Note 1) A. tert-Butyl pivaloyloxy carbamate (2). In air, a 1-L round-bottomed flask (29/32) equipped with a Teflon-coated egg-shaped magnetic stirbar (40 x 20 mm) is consecutively charged with N-Boc hydroxylamine (30.0 g, 0.225 mol) (Note 2), dichloromethane (CH2Cl2, 0.4 L, 0.6 M) (Note 2) and triethylamine (31.3 mL, 22.8 g, 0.225 mol, 1.0 equiv) (Note 2). The reaction vessel is then placed in an ice/water bath and stirred until all solids have dissolved (Note 3). The round-bottomed flask is equipped with a 50-mL dropping funnel (14/23, Teflon stopcock, pressure compensation) (Note 4) which is filled with pivaloyl chloride (PivCl, 28.0 mL, 27.5 g, 0.228 mol, 1.0 equiv) (Note 2). The dropping funnel is sealed with a rubber septum attached to a balloon (Note 5). PivCl is added dropwise to the stirring solution over 30 min (Note 6) and left for a further 30 min before the ice/water bath is removed. After an additional 2 hours of stirring at room temperature (Note 7), the resulting suspension is vacuum-filtered Org.
    [Show full text]
  • Brønsted-Acid-Catalyzed Exchange in Polyester Dynamic Covalent Networks
    Supporting Information: Brønsted-Acid-Catalyzed Exchange in Polyester Dynamic Covalent Networks Jeffrey L. Self,ǂ Neil D. Dolinski,ǂ Manuel S. Zayas,ǂ Javier Read de Alaniz,ǂ and Christopher M. Batesǁꓕ* ǂDepartment of Chemistry and Biochemistry, ǁMaterials Department, ꓕDepartment of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States Corresponding author: * [email protected] Experimental methods .................................................................................................................................. 3 Reagent and solvent information ............................................................................................................. 3 Instrumentation ........................................................................................................................................ 3 Synthesis ................................................................................................................................................... 3 4-Methylcaprolactone (4mCL): ............................................................................................................. 3 4,4’-Bioxepane-7,7’-dione (BOD): ......................................................................................................... 3 Sample preparation .................................................................................................................................. 4 Figure S1. General process flow for sample preparation and testing. ............................................
    [Show full text]
  • Group Vibrational Mode Assignments As a Broadly Applicable Tool For
    Subscriber access provided by Caltech Library Article Group Vibrational Mode Assignments as a Broadly Applicable Tool for Characterizing Ionomer Membrane Structure as a Function of Degree of Hydration Neili Loupe, Khaldoon Abu-Hakmeh, Shuitao Gao, Luis Gonzalez, Matthew Ingargiola, Kayla Mathiowetz, Ryan Cruse, Jonathan Doan, Anne Schide, Isaiah Salas, Nicholas Dimakis, Seung Soon Jang, William A. Goddard, and Eugene S. Smotkin Chem. Mater., Just Accepted Manuscript • Publication Date (Web): 14 Feb 2020 Downloaded from pubs.acs.org on February 14, 2020 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
    [Show full text]
  • Triflamide Anchored SBA-15 Catalyst for Nitration of Alkyl Aromatics in Microwave
    Indian Journal of Chemistry Vol. 53A, April-May 2014, pp. 545-549 Triflamide anchored SBA-15 catalyst for nitration of alkyl aromatics in microwave Venkata Siva Prasad Ganjalaa, b, Suresh Mutyalaa, Chinna Krishna Prasad Neelia, Mukkanti Khaggab, *, Kamaraju Seetha Rama Raoa & David Raju Burria, * aCatalysis Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 607, India Email: [email protected] bCentre for Chemical Sciences & Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, 500 085, India Email: [email protected] Received 20 January 2014; revised and accepted 29 January 2014 A series of triflamide anchored SBA-15 (SBA-NH-TA) catalysts with 5-20 wt% triflic acid (TA) loadings have been synthesized through the functionalization of propylamine on the surface of SBA-15 (SBA-NH2), followed by covalent attachment of triflic acid with –NH2 group of SBA-NH2. With SBA-NH-TA as catalyst and 69% HNO3 as nitrating agent, highly accelerated and safe nitration of aromatic compounds in microwave under solvent-free conditions has been achieved. The structural and textural characteristics of SBA-NH-TA catalysts have been determined from N2 sorption and low-angle XRD techniques. As the loading of TA increases, the conversion of alkylaromatics to their nitrated products increases significantly. Reaction parameters like amount of catalyst, amount of triflic acid loading, substrate to nitric acid ratio, reaction temperature and reaction time have been investigated. Keywords: Catalysts, Nitration, Metal-free nitration, Triflamide anchored SBA-15, Alkyl aromatics, Xylene Nitration of aromatic substrates is one of the most been studied for nitration of aromatic compounds.
    [Show full text]