Lispworks® IDE User Guide Version 6.1 Copyright and Trademarks Lispworks IDE User Guide (Unix Version) Version 6.1 November 2011 Copyright © 2011 by Lispworks Ltd

Total Page:16

File Type:pdf, Size:1020Kb

Lispworks® IDE User Guide Version 6.1 Copyright and Trademarks Lispworks IDE User Guide (Unix Version) Version 6.1 November 2011 Copyright © 2011 by Lispworks Ltd LispWorks® IDE User Guide Version 6.1 Copyright and Trademarks LispWorks IDE User Guide (Unix version) Version 6.1 November 2011 Copyright © 2011 by LispWorks Ltd. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd. The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of that license. LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd. Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade- marks or trademarks of their respective holders. The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox Corporation. The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom: Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro- vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa- tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war- ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con- tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software. LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis- sion notice: ICU License - ICU 1.8.1 and later COPYRIGHT AND PERMISSION NOTICE Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft- ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM- ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men- tioned herein are the property of their respective owners. US Government Restricted Rights The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of the United States. Address Telephone Fax LispWorks Ltd From North America: 877 759 8839 From North America: 617 812 8283 St. John’s Innovation Centre Cowley Road (toll-free) From elsewhere: +44 870 2206189 Cambridge CB4 0WS From elsewhere: +44 1223 421860 England www.lispworks.com Contents Preface xi 1 Introduction 1 Major tools 2 2 A Short Tutorial 5 Starting the environment 6 Creating a Listener 7 Using the Debugger 9 Viewing output 12 Inspecting objects using the Inspector 13 Examining classes in the Class Browser 15 Summary 18 3 Common Features 21 Displaying tool windows 22 Setting preferences 28 Performing editing functions 39 The Break gesture 42 The history list 43 Operating on files 44 Displaying packages 45 Performing operations on selected objects 48 Using different views 51 iii Tracing symbols from tools 55 Linking tools together 56 Filtering information 56 Regexp matching 59 Completion 61 Examining a window 66 4 Getting Help 69 Online manuals in HTML format 69 Online help for editor commands 72 Browsing manuals online using Adobe Reader 73 Reporting bugs 73 5 Session Saving 75 What session saving does 75 The default session 76 What is saved and what is not saved 76 Saving sessions 77 Redirecting images to a Saved Session image 82 Non-IDE interfaces and session saving 83 6 Manipulating Graphs 85 An overview of graphs 85 Searching graphs 87 Expanding and collapsing graphs 87 Moving nodes in graphs 88 Displaying plans of graphs 89 Preferences for graphs 91 Using graphs in your programs 96 7 The Podium 97 The podium window 97 Specifying the initial tools 98 8 The Class Browser 99 Simple use of the Class Browser 100 Examining slot information 107 iv Examining superclasses and subclasses 110 Examining classes graphically 112 Examining generic functions and methods 116 Examining initargs 120 Examining class precedences 122 9 The Object Clipboard 125 Placing objects on the Object Clipboard 126 Browsing clipped objects 129 Removing objects 130 Filtering 130 Using the Object Clipboard with a Listener 131 10 The Compilation Conditions Browser 135 Introduction 135 Examining conditions 137 Configuring the display 138 Access to other tools 140 11 The Debugger Tool 141 Description of the Debugger 143 What the Debugger tool does 148 Simple use of the Debugger tool 149 The stack in the Debugger 150 An example debugging session 151 Performing operations on the error condition 153 Performing operations on stack frames 153 Performing operations on frame variables 155 Configuring the debugger tool 155 The Notifier window 158 Errors in CAPI display callbacks 159 12 The Tracer 161 Introduction 161 Tracing and Untracing functions 161 Examining the output of tracing 162 Example 164 v 13 The Editor 169 Displaying and editing files 171 Displaying output messages in the Editor 175 Displaying and swapping between buffers 175 Displaying Common Lisp definitions 179 Changed definitions 181 Finding definitions 183 Setting Editor preferences 184 Basic Editor commands 187 Other essential commands 192 Cutting, copying and pasting using the clipboard 193 Cutting, copying and pasting using the kill ring 193 Searching and replacing text 197 Using Lisp-specific commands 201 Help with editing 209 14 The Function Call Browser 211 Introduction 211 Examining functions using the graph views 212 Examining functions using the text view 216 Configuring the function call browser 218 Configuring graph displays 219 Performing operations on functions 220 15 The Generic Function Browser 221 Examining information about methods 222 Examining information about combined methods 225 Configuring the Generic Function Browser 231 16 The Search Files tool 233 Introduction 233 Performing searches 235 Viewing the results 244 Modifying the matched lines 245 Configuring the Search Files tool 246 vi 17 The Inspector 253 Inspecting the current object 253 Description of the Inspector tool 254 Filtering the display 255 Examining objects 257 Operating upon objects and items 258 Configuring the Inspector 263 Customizing the Inspector 267 Creating new inspection formats 267 18 The Symbol Browser 273 Introduction 273 Description of the Symbol Browser 275 Configuring the Symbol Browser 279 19 The Interface Builder 281 Description of the Interface Builder 282 Creating or loading interfaces 283 Creating an interface layout 286 Creating a menu system 289 Editing and saving code 294 Performing operations on objects 298 Performing operations on the current interface 303 Performing operations on elements 305 20 Example: Using The Interface Builder 307 Creating the basic layout 309 Specifying attribute values 311 Creating the menu system 314 Specifying callbacks in the interface definition 317 Saving the interface 319 Defining the callbacks 319 Creating a system 323 Testing the example
Recommended publications
  • An Implementation of Python for Racket
    An Implementation of Python for Racket Pedro Palma Ramos António Menezes Leitão INESC-ID, Instituto Superior Técnico, INESC-ID, Instituto Superior Técnico, Universidade de Lisboa Universidade de Lisboa Rua Alves Redol 9 Rua Alves Redol 9 Lisboa, Portugal Lisboa, Portugal [email protected] [email protected] ABSTRACT Keywords Racket is a descendent of Scheme that is widely used as a Python; Racket; Language implementations; Compilers first language for teaching computer science. To this end, Racket provides DrRacket, a simple but pedagogic IDE. On the other hand, Python is becoming increasingly popular 1. INTRODUCTION in a variety of areas, most notably among novice program- The Racket programming language is a descendent of Scheme, mers. This paper presents an implementation of Python a language that is well-known for its use in introductory for Racket which allows programmers to use DrRacket with programming courses. Racket comes with DrRacket, a ped- Python code, as well as adding Python support for other Dr- agogic IDE [2], used in many schools around the world, as Racket based tools. Our implementation also allows Racket it provides a simple and straightforward interface aimed at programs to take advantage of Python libraries, thus signif- inexperienced programmers. Racket provides different lan- icantly enlarging the number of usable libraries in Racket. guage levels, each one supporting more advanced features, that are used in different phases of the courses, allowing Our proposed solution involves compiling Python code into students to benefit from a smoother learning curve. Fur- semantically equivalent Racket source code. For the run- thermore, Racket and DrRacket support the development of time implementation, we present two different strategies: additional programming languages [13].
    [Show full text]
  • Common Lispworks User Guide
    LispWorks® for the Windows® Operating System Common LispWorks User Guide Version 5.1 Copyright and Trademarks Common LispWorks User Guide (Windows version) Version 5.1 February 2008 Copyright © 2008 by LispWorks Ltd. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd. The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of that license. LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd. Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade- marks or trademarks of their respective holders. The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox Corporation. The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom: Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro- vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T.
    [Show full text]
  • IDE User Guide Version 7.1 Copyright and Trademarks Lispworks IDE User Guide (Unix Version) Version 7.1 September 2017 Copyright © 2017 by Lispworks Ltd
    LispWorks® IDE User Guide Version 7.1 Copyright and Trademarks LispWorks IDE User Guide (Unix version) Version 7.1 September 2017 Copyright © 2017 by LispWorks Ltd. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd. The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of that license. LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd. Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade- marks or trademarks of their respective holders. The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox Corporation. The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom: Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro- vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T.
    [Show full text]
  • Omnipresent and Low-Overhead Application Debugging
    Omnipresent and low-overhead application debugging Robert Strandh [email protected] LaBRI, University of Bordeaux Talence, France ABSTRACT application programmers as opposed to system programmers. The state of the art in application debugging in free Common The difference, in the context of this paper, is that the tech- Lisp implementations leaves much to be desired. In many niques that we suggest are not adapted to debugging the cases, only a backtrace inspector is provided, allowing the system itself, such as the compiler. Instead, throughout this application programmer to examine the control stack when paper, we assume that, as far as the application programmer an unhandled error is signaled. Most such implementations do is concerned, the semantics of the code generated by the not allow the programmer to set breakpoints (unconditional compiler corresponds to that of the source code. or conditional), nor to step the program after it has stopped. In this paper, we are mainly concerned with Common Furthermore, even debugging tools such as tracing or man- Lisp [1] implementations distributed as so-called FLOSS, i.e., ually calling break are typically very limited in that they do \Free, Libre, and Open Source Software". While some such not allow the programmer to trace or break in important sys- implementations are excellent in terms of the quality of the tem functions such as make-instance or shared-initialize, code that the compiler generates, most leave much to be simply because these tools impact all callers, including those desired when it comes to debugging tools available to the of the system itself, such as the compiler.
    [Show full text]
  • Proceedings of the 8Th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (Ed.) Sponsors
    Proceedings of the 8th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (ed.) Sponsors We gratefully acknowledge the support given to the 8th European Lisp Symposium by the following sponsors: WWWLISPWORKSCOM i Organization Programme Committee Julian Padget – University of Bath, UK (chair) Giuseppe Attardi — University of Pisa, Italy Sacha Chua — Toronto, Canada Stephen Eglen — University of Cambridge, UK Marc Feeley — University of Montreal, Canada Matthew Flatt — University of Utah, USA Rainer Joswig — Hamburg, Germany Nick Levine — RavenPack, Spain Henry Lieberman — MIT, USA Christian Queinnec — University Pierre et Marie Curie, Paris 6, France Robert Strandh — University of Bordeaux, France Edmund Weitz — University of Applied Sciences, Hamburg, Germany Local Organization Christophe Rhodes – Goldsmiths, University of London, UK (chair) Richard Lewis – Goldsmiths, University of London, UK Shivi Hotwani – Goldsmiths, University of London, UK Didier Verna – EPITA Research and Development Laboratory, France ii Contents Acknowledgments i Messages from the chairs v Invited contributions Quicklisp: On Beyond Beta 2 Zach Beane µKanren: Running the Little Things Backwards 3 Bodil Stokke Escaping the Heap 4 Ahmon Dancy Unwanted Memory Retention 5 Martin Cracauer Peer-reviewed papers Efficient Applicative Programming Environments for Computer Vision Applications 7 Benjamin Seppke and Leonie Dreschler-Fischer Keyboard? How quaint. Visual Dataflow Implemented in Lisp 15 Donald Fisk P2R: Implementation of
    [Show full text]
  • Release Notes
    LispWorks® Release Notes and Installation Guide Version 6.0 Copyright and Trademarks LispWorks Release Notes and Installation Guide Version 6.0 December 2009 Copyright © 2009 by LispWorks Ltd. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd. The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of that license. LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd. Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade- marks or trademarks of their respective holders. The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox Corporation. The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom: Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro- vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T.
    [Show full text]
  • A Python Implementation for Racket
    PyonR: A Python Implementation for Racket Pedro Alexandre Henriques Palma Ramos Thesis to obtain the Master of Science Degree in Information Systems and Computer Engineering Supervisor: António Paulo Teles de Menezes Correia Leitão Examination Committee Chairperson: Prof. Dr. José Manuel da Costa Alves Marques Supervisor: Prof. Dr. António Paulo Teles de Menezes Correia Leitão Member of the Committee: Prof. Dr. João Coelho Garcia October 2014 ii Agradecimentos Agradec¸o... Em primeiro lugar ao Prof. Antonio´ Leitao,˜ por me ter dado a oportunidade de participar no projecto Rosetta com esta tese de mestrado, por todos os sabios´ conselhos e pelos momentos de discussao˜ e elucidac¸ao˜ que se proporcionaram ao longo deste trabalho. Aos meus pais excepcionais e a` minha mana preferida, por me terem aturado e suportado ao longo destes quase 23 anos e sobretudo pelo incondicional apoio durante estes 5 anos de formac¸ao˜ superior. Ao pessoal do Grupo de Arquitectura e Computac¸ao˜ (Hugo Correia, Sara Proenc¸a, Francisco Freire, Pedro Alfaiate, Bruno Ferreira, Guilherme Ferreira, Inesˆ Caetano e Carmo Cardoso), por todas as sug- estoes˜ e pelo inestimavel´ feedback em artigos e apresentac¸oes.˜ Aos amigos em Tomar (Rodrigo Carrao,˜ Hugo Matos, Andre´ Marques e Rui Santos) e em Lisboa (Diogo da Silva, Nuno Silva, Pedro Engana, Kaguedes, Clara Paiva e Odemira), por terem estado pre- sentes, duma forma ou doutra, nos essenciais momentos de lazer. A` Fundac¸ao˜ para a Cienciaˆ e Tecnologia (FCT) e ao INESC-ID pelo financiamento e acolhimento atraves´ da atribuic¸ao˜ de uma bolsa de investigac¸ao˜ no ambitoˆ dos contratos Pest-OE/EEI/LA0021/2013 e PTDC/ATP-AQI/5224/2012.
    [Show full text]
  • ASDF 3, Or Why Lisp Is Now an Acceptable Scripting Language (Extended Version)
    ASDF 3, or Why Lisp is Now an Acceptable Scripting Language (Extended version) François-René Rideau Google [email protected] Abstract libraries, or network services; one can scale them into large, main- ASDF, the de facto standard build system for Common Lisp, has tainable and modular systems; and one can make those new ser- been vastly improved between 2009 and 2014. These and other im- vices available to other programs via the command-line as well as provements finally bring Common Lisp up to par with "scripting via network protocols, etc. languages" in terms of ease of writing and deploying portable code The last barrier to making that possible was the lack of a that can access and "glue" together functionality from the underly- portable way to build and deploy code so a same script can run ing system or external programs. "Scripts" can thus be written in unmodified for many users on one or many machines using one or Common Lisp, and take advantage of its expressive power, well- many different compilers. This was solved by ASDF 3. defined semantics, and efficient implementations. We describe the ASDF has been the de facto standard build system for portable most salient improvements in ASDF and how they enable previ- CL software since shortly after its release by Dan Barlow in 2002 ously difficult and portably impossible uses of the programming (Barlow 2004). The purpose of a build system is to enable divi- language. We discuss past and future challenges in improving this sion of labor in software development: source code is organized key piece of software infrastructure, and what approaches did or in separately-developed components that depend on other compo- didn’t work in bringing change to the Common Lisp community.
    [Show full text]
  • Parallel Programming with Lisp for Performance
    Parallel Programming with Lisp for Performance Pascal Costanza, Intel, Belgium European Lisp Symposium 2014, Paris, France The views expressed are my own, and not those of my employer. Legal Notices • Cilk, Intel, the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. Other names and brands may be claimed as the property of others. Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance. Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase. • Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instructions sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. (Notice revision #20110804) • Copyright © 2014 Intel Corporation.
    [Show full text]
  • Jon L. White Collection on Common Lisp
    http://oac.cdlib.org/findaid/ark:/13030/c89w0mkb No online items Jon L. White collection on Common Lisp Finding aid prepared by Bo Doub, Kim Hayden, and Sara Chabino Lott Processing of this collection was made possible through generous funding from The Andrew W. Mellon Foundation, administered through the Council on Library and Information Resources' Cataloging Hidden Special Collections and Archives grant. Computer History Museum 1401 N. Shoreline Blvd. Mountain View, CA, 94043 (650) 810-1010 [email protected] March 2017 Jon L. White collection on X6823.2013 1 Common Lisp Title: Jon L. White collection Identifier/Call Number: X6823.2013 Contributing Institution: Computer History Museum Language of Material: English Physical Description: 8.75 Linear feet,7 record cartons Date (bulk): Bulk, 1978-1995 Date (inclusive): 1963-2012 Abstract: The Jon L. White collection on Common Lisp contains material relating to the development and standardization of the programming language Common Lisp and, more generally, the Lisp family of programming languages. Records date from 1963 to 2012, with the bulk of the material ranging from 1978 to 1995, when White was working at MIT’s Artificial Intelligence Laboratory, Xerox PARC (Palo Alto Research Center), Lucid, and Harlequin Group. Throughout many of these positions, White was serving on the X3J13 Committee to formalize a Common Lisp standard, which aimed to combine and standardize many previous dialects of Lisp. This collection consists of conference proceedings, manuals, X3J13 Committee correspondence and meeting minutes, notebooks, technical papers, and periodicals documenting White’s work in all of these roles. Other dialects of Lisp--especially MAClisp--are also major focuses of the collection.
    [Show full text]
  • A Monotonic Superclass Linearization for Dylan
    A Monotonic Superclass Linearization for Dylan Kim Barrett <[email protected]> Bob Cassels <[email protected]> Paul Haahr <[email protected]> David A. Moon <[email protected]> Keith Playford <[email protected]> P. Tucker Withington <[email protected]>† 28 June 1996 Abstract Object-oriented languages with multiple inheritance and automatic conflict resolution typically use a linearization of superclasses to determine which version of a property to inherit when several superclasses provide definitions. Recent work has defined several desirable characteristics for linearizations, the most important being monotonicity, which prohibits inherited properties from skipping over direct superclasses. Combined with Dylan’s sealing mechanism, a monotonic linearization enables some compile-time method selection that would otherwise be impossible in the absence of a closed-world assumption. The Dylan linearization is monotonic, easily described, strictly observes local precedence order, and produces the same ordering as CLOS when that is monotonic. We present an implementation based on merging and a survey of class heterarchies from several large programs, analyzing where commonly used linearizations differ. use this model include Ada 95, C++, CLOS, Dylan, Introduction Eiffel, Java, Oberon-2, Sather, and Smalltalk. Why linearizations? In object-oriented systems with multiple inheritance, some mechanism must be used for resolving conflicts In a class-based object-oriented language, objects are when inheriting different definitions of the same property instances of classes. The properties of an object – what from multiple superclasses. Some languages require slots or instance variables it has, which methods are manual resolution by the programmer, with mechanisms applicable to it – are determined by its class.
    [Show full text]
  • Compositional and Analytic Applications of Automated Music Notation Via Object-Oriented Programming
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Compositional and analytic applications of automated music notation via object-oriented programming Permalink https://escholarship.org/uc/item/3kk9b4rv Author Trevino, Jeffrey Robert Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Compositional and Analytic Applications of Automated Music Notation via Object-oriented Programming A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Music by Jeffrey Robert Trevino Committee in charge: Professor Rand Steiger, Chair Professor Amy Alexander Professor Charles Curtis Professor Sheldon Nodelman Professor Miller Puckette 2013 Copyright Jeffrey Robert Trevino, 2013 All rights reserved. The dissertation of Jeffrey Robert Trevino is approved, and it is acceptable in quality and form for publication on mi- crofilm and electronically: Chair University of California, San Diego 2013 iii DEDICATION To Mom and Dad. iv EPIGRAPH Extraordinary aesthetic success based on extraordinary technology is a cruel deceit. —-Iannis Xenakis v TABLE OF CONTENTS Signature Page .................................... iii Dedication ...................................... iv Epigraph ....................................... v Table of Contents................................... vi List of Figures .................................... ix Acknowledgements ................................. xii Vita .......................................... xiii Abstract of the Dissertation . xiv Chapter 1 A Contextualized History of Object-oriented Musical Notation . 1 1.1 What is Object-oriented Programming (OOP)? . 1 1.1.1 Elements of OOP . 1 1.1.2 ANosebleed History of OOP. 6 1.2 Object-oriented Notation for Composers . 12 1.2.1 Composition as Notation . 12 1.2.2 Generative Task as an Analytic Framework . 13 1.2.3 Computational Models of Music/Composition .
    [Show full text]