Breeding of Chestnut Varieties Resistant to Chestnut Gall Wasp, Dryocosmus Kuriphilus YASUMATSU

Total Page:16

File Type:pdf, Size:1020Kb

Breeding of Chestnut Varieties Resistant to Chestnut Gall Wasp, Dryocosmus Kuriphilus YASUMATSU Breeding of Chestnut Varieties Resistant to Chestnut Gall Wasp, Dryocosmus kuriphilus YASUMATSU By ISAO SHIMURA 2nd Laboratory of Fruit Tree Breeding, Department of Fruit Trees, Horticultural Research Station The first breeding program of the chest­ the gall wasp. Currently, these varieties are nut, Castanea spp., was started in 1947 at the main commercial varieties. the Horticultural Research Station and plan­ ned crossings were completed in 1962. At Chestnut gall wasp present, we are conducting breeding works according to the second program. In 1941, chestnut trees infested with the The aims of the first program were to gall wasp were found in Okayama Prefecture breed early and mid-season varieties having at first, and the chestnut production was re­ high productivity, superior quality and good markably decreased by the rapid spread of appearance of the nut. insect in the various growing districts. However, in 1941, the chestnut gall wasp, Today, this insect is widely distributed all Dryocosmus kuriphilus YASUMATSU, was gen­ over Japan (Fig. 1), and is also reported to erated in Okayama Prefecture located in the southwestern part of Japan. They spread rapidly at various chestnut growing districts in the 1950's causing great damage to the chestnut trees. In 1952, a new aim of the development of varieties resistant to the gall wasp was added to the chestnut breeding. Since that time, the character of resistance has been particu­ larly emphasized more and more. As the result of this program, we commer­ cially introduced four varieties resistant to Fig. 1. Invaded year of the chestnut gall wasps in various prefectures of Japan 225 have invaded Korean in 1958. The adults of these insects are a small gall wasp colored shiny black and their body length is about 3.0 mm (Fig. 2). They appear from late June to middle July in Hiratsuka, Kanagawa Prefecture, and lay eggs in the dormant buds formed on the current shoots. The eggs hatch in August and the larvae invade the bud tissue im­ mediately, passing the winter in the tissue with larva form. In spring, they grow in the tissue and make a gall on the parasitic bud in April Fig. 2. A female adult of the chestnut gall wasp (Fig. 3). Consequently, the nut production is remarkably decreased by the check of cur­ rent shoot growth. Selection and breeding- of chest­ nut resistant to the g·all wasp Extensive studies have been conducted by a number of entomologists to control the wasp through various ways including appli­ cation of chemicals and natural enemies, but all their efforts were in vain. On the other hand, some varieties among the chestnut cultivars were found to be ap­ Fig. 3. Galls formed on the branch of two years parently resistant to the wasp in the field old chestnut tree observations. The cultivars could be classified Chcslnul rollec tion at thr llorl. Res. S ta. 0 0 0 0: 0 00 0 9 . io .!. 0 ~ 000 00009000 oe 0 :• •• •••• • • ~ .• • •:••••• . • :• • • • ' ~lidsc:~son • Late 20 30 10 20 30 10 20 30 i\ugus i : Scpl emhe1· Octobe r ' ' Mnin commcl'cial vnriCLi ~?S ' 0 ' 0 0 9 i. § o~o i •• • R es istant vnr·ictit~s • 0 ·~ e N on• resistant \'tu·ictic.s Fig. 4. Ripening periods of the resistant and non-resistant varieties to chestnut gall wasp (KAJIURA, 1955) 226 JARQ Vol. 6, No. 4, 1972 into two groups, the resistant and the non­ varieties as pollen parent. resistant. Non-resistant varieties disappeared A total of 3,597 hybrids from 3,946 obtained from commercial growing because of their seedlings were grown in the experimental severe infestation. fields and subjected to tests. Thirteen indi­ The culturists emphasized the need of viduals resistant to the wasp were selected breeding of the resistant varieties that ripen and released in 1956 in order to study the in September since many of the varieties general characters of the tree, productivity ripening during that time bad been severely and resistance to the gall wasp and to blight damaged by the insect. This was a serious fungus at 40 prefectural experiment stations. problem because the nuts are in the greatest Four individuals were selected from this demand in September (Fig. 4). cooperative tests continued until 1967. The first program of chestnut breeding was These individuals were named 'Tanzawa' conducted from 1947 to 1962 at this station. (chestnut Norin No. 1), 'Ibuki' (chestnut The crossings of 139 combinations were done Norin No. 2) and 'Tsukuba' (chestnut Norin between 18 varieties as female parent and 28 No. 3) in 1959, and 'Ishizuchi' (chestnut Table 1. Development of varieties bred in the Horticultural Research Station Registered Crossed Year of the first Test yearb Named and No."' Variety Parentage year stage selection at for general released the Hort. Res. Sta. characteristics year ' Chestnut Otomune Tanzawa X 1949 1955 1956- 1958 1959 Norin No. 1 Taishowase Chestnut Ginyose lbuki X 1947 1955 1956- 1958 1959 Norin No. 2 Toyotamawase Chestnut Ganne Norin No. 3 Tsukuba X 1949 1955 1956-1958 ~959 Hayadama Chestnut Ganne Ishizuchi X 1948 1955 1956~1967 1968 Norin No. 4 Kasaharawase a Registered No. at the Ministry of Agriculture and Forestry, Japan b Cooperative tests were made at 40 places of various prefectural experiment stations Table 2. Characteritics of Tanzawa, lbuki, Tsukuba and lshizuchi bred in the Hort. Res. Sta. Variety Tree Nut Tanzawa Vigor medium, not timber-type, Large, average weight 20 g, shell light brown, blooms from early to middle June pellicle not easily separable, quality moderate, ripense from early September lbuki Vigor medium, not timber-type, Large, average weight 20 g, shell dark brown, blooms early to late June, bears pellicle not easily separable, quality good, heavily ripens from early to middle September Tsukuba Upright, vigorous, not timber-type, Large, average weight 20 g, shell reddish blooms from early to late June, bears brown, pellicle not easily separable, quality heavily good, keeping quality superior than Tanzawa and lbuki varieties Ishizu chi Vigor medium, not timber-type, Very large, average weight 23 g, shell shiny blooms from middle June to early brown, quality good, keeping quality good, July, bear heavily ripens from early to middle October 227 Norin No. 4) in 1968, all being introduced is of a real resistant nature. commercially (Tables 1 and 2). No sooner Recently, Torikata and Matsui ( 1965), and had they been commercially introduced than Matsui and Torikata (1968) conducted a they were planted in commercial orchards. chemical analysis to clarify the biochemical Consequently, the acreage of chestnut as differences between the resistant and non­ orchard trees has been remarkably increased resistant varieties. (Fig. 5). They pointed out that the contents of cate­ chol tannin and leucoanthocyanidin in the 40, 00-0 - 1.. bark of t·esistant varieties were higher than those of the non-resistant varieties and that the pyrogallol tannin content in the resistant 30.000 - varieties was lower than that of the non­ resistant varieties. Furthermore, they obtained results that 20.000 - the correlation coefficients between the re­ sistance grade of the varieties to the gall wasp and catechol tannin content, and pyro . 10, 000 gallol tannin content were +0.782·x.. > :· and -0.476-», respectively. I I ' •• I • •• t I 1960 1965 1970 Consequently, they guessed that the cate­ chol tannin may be one of the factors affecting Fig. 5. Fluctuations of the chestnut growing acreage in Japan the resistance to the gall wasp. However, the mechanism of resistance is not yet made Resistant mechanism and he­ clear in every respect. redity Regarding the inheritance of the resistant character, Kajiura (1955) reported the rate Fukuda and Okudai (1951) observed the of resistant seedHngs in the hybrids obtanied egg-laying preference of the wasp on the from various crosses. He showed that the resistant and non-resistant varieties. From high percentage of resistant seedlings ap­ this observation, they concluded that the gall peared when the resistant variety was used wasp could not have a non-preference of egg­ as a female or male parent for the cross laying between the resistant and non-resistant (Table 3). varieties. Especially, almost all of the F, hybrids Thereafter, Okudai (1956) made a micro­ obtained from the cross of 'Ginyose' used as scopic observation on the parasitic buds col­ a female or male parent were resistant seed­ lected seasonally from both the resistant lings. The performance of the cross A in variety, 'Ginyose', and the non-resistant Table 3, suggested that the 'Ginyose' variety variety, 'Taishowase'. From the result, he has a homozygous dominant factor to the found that the hatched larva invading the resistance, but that 22.4 per cent of the re­ bud of the non-resistant variety, 'Taishowase', sistant seedlings obtained from the cross E grew up to an adult normally in it. But, with showed the existence of two or more factors the resistant variety, 'Ginyose', the tissue concerned with the resistance. surrounding the living chamber of the larva Though these results could not be analyzed induces the necrosis. sufficiently yet, the data proved to be a matter The larva, consequently, died from juvenile of great importance for our breeding works. stage to pupa stage in the parasitic bud. They showed that resistant varieties could be From these results, he concluded that the obtained without much difficulty since the resistance to the wasp of the resistant variety horticultural varieties are propagated by 228 JARQ Vol. 6, No. 4, 1972 Table 3. Segregation of resistant seedlings to the chestnut gall wasp in the hybrid seedlings derived from various crosses (KAJIUHA, 1955) Hybrid Resistant Non,resistant Percentage of non- Combination* seedlings seedlings seedlings resistant seedlings A 86 86 0 0 B 258 257 1 0.4 C 170 148 22 12.9 D 302 231 71 23.5 E 170 38 132 77.
Recommended publications
  • CHESTNUT (CASTANEA Spp.) CULTIVAR EVALUATION for COMMERCIAL CHESTNUT PRODUCTION
    CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE By Ana Maria Metaxas Approved: James Hill Craddock Jennifer Boyd Professor of Biological Sciences Assistant Professor of Biological and Environmental Sciences (Director of Thesis) (Committee Member) Gregory Reighard Jeffery Elwell Professor of Horticulture Dean, College of Arts and Sciences (Committee Member) A. Jerald Ainsworth Dean of the Graduate School CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE by Ana Maria Metaxas A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science May 2013 ii ABSTRACT Chestnut cultivars were evaluated for their commercial applicability under the environmental conditions in Hamilton County, TN at 35°13ꞌ 45ꞌꞌ N 85° 00ꞌ 03.97ꞌꞌ W elevation 230 meters. In 2003 and 2004, 534 trees were planted, representing 64 different cultivars, varieties, and species. Twenty trees from each of 20 different cultivars were planted as five-tree plots in a randomized complete block design in four blocks of 100 trees each, amounting to 400 trees. The remaining 44 chestnut cultivars, varieties, and species served as a germplasm collection. These were planted in guard rows surrounding the four blocks in completely randomized, single-tree plots. In the analysis, we investigated our collection predominantly with the aim to: 1) discover the degree of acclimation of grower- recommended cultivars to southeastern Tennessee climatic conditions and 2) ascertain the cultivars’ ability to survive in the area with Cryphonectria parasitica and other chestnut diseases and pests present.
    [Show full text]
  • Leafy and Crown Gall
    Is it Crown Gall or Leafy Gall? Melodie L. Putnam and Marilyn Miller Humphrey Gifford, an early English poet said, “I cannot say the crow is white, But needs must call a spade a spade.” To call a thing by its simplest and best understood name is what is meant by calling a spade a spade. We have found confusion around the plant disease typified by leafy galls and shoot proliferation, and we want to call a spade a spade. The bacterium Rhodococcus fascians causes fasciation, leafy galls and shoot proliferation on plants. These symptoms have been attributed variously to crown gall bacteria (Agrobacterium tumefaciens), virus infection, herbicide damage, or eriophyid mite infestation. There is also confusion about what to call the Figure 1. Fasciation (flattened growth) of a pumpkin symptoms caused by R. fascians. Shoot stem, which may be due to disease, a genetic proliferation and leafy galls are sometimes condition, or injury. called “fasciation,” a term also used to refer to tissues that grow into a flattened ribbon- like manner (Figure 1). The root for the word fasciation come from the Latin, fascia, to fuse, and refers to a joining of tissues. We will reserve the term fasciation for the ribbon like growth of stems and other organs. The terms “leafy gall” and “shoot proliferation” are unfamiliar to many people, but are a good description of what is seen on affected plants. A leafy gall is a mass of buds or short shoots tightly packed together and fused at the base. These may appear beneath the soil or near the soil line at the base of the stem (Figure 2).
    [Show full text]
  • Chestnut Gall Wasp ( Dryocosmus Kuriphilus )
    New Disease Reports (2011) 23, 35. [doi:10.5197/j.2044-0588.2011.023.035] Chestnut gall wasp (Dryocosmus kuriphilus) infestations: new opportunities for the chestnut blight fungus Cryphonectria parasitica? S. Prospero* and B. Forster Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland *E-mail: [email protected] Received: 08 Mar 2011. Published: 30 Jun 2011. Keywords: invasive organisms, interactions, Castanea sativa The invasive chestnut gall wasp Dryocosmus kuriphilus (Cynipidae) is one eventually spreading into the adjacent twig, inducing the formation of of the most important insect pests on Castanea species worldwide (EPPO, cankers. More detailed information on the incidence of chestnut blight on 2005). In 2009, D. kuriphilus was found for the first time in southern twigs with galls would be helpful for better estimating the ecological Switzerland, most likely an invasion from nearby Italy (Forster et al., effects of the interaction between these two invasive organisms. 2009). In summer 2010, in a five hectare chestnut orchard near Stabio, a twig dieback was observed in the crown of trees heavily infested with last Acknowledgements season's D. kuriphilus galls (Fig. 1). This orchard showed one of the The authors would like to thank Esther Jung for conducting the laboratory heaviest gall infestations in Switzerland. In spring 2010, more than 40% of analyses and Daniel Rigling and Ursula Heiniger for critically reading the the buds were infested with galls. An inspection after leaf fall revealed that manuscript. young twigs (i.e. twigs formed in the current year or in the previous year) with galls were more likely to have symptoms of chestnut blight, caused References by the fungus Cryphonectria parasitica (Diaporthales, Ascomycota).
    [Show full text]
  • The Structure of Cynipid Oak Galls: Patterns in the Evolution of an Extended Phenotype
    The structure of cynipid oak galls: patterns in the evolution of an extended phenotype Graham N. Stone1* and James M. Cook2 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK ([email protected]) 2Department of Biology, Imperial College, Silwood Park, Ascot, Berkshire SL5 7PY, UK Galls are highly specialized plant tissues whose development is induced by another organism. The most complex and diverse galls are those induced on oak trees by gallwasps (Hymenoptera: Cynipidae: Cyni- pini), each species inducing a characteristic gall structure. Debate continues over the possible adaptive signi¢cance of gall structural traits; some protect the gall inducer from attack by natural enemies, although the adaptive signi¢cance of others remains undemonstrated. Several gall traits are shared by groups of oak gallwasp species. It remains unknown whether shared traits represent (i) limited divergence from a shared ancestral gall form, or (ii) multiple cases of independent evolution. Here we map gall character states onto a molecular phylogeny of the oak cynipid genus Andricus, and demonstrate three features of the evolution of gall structure: (i) closely related species generally induce galls of similar structure; (ii) despite this general pattern, closely related species can induce markedly di¡erent galls; and (iii) several gall traits (the presence of many larval chambers in a single gall structure, surface resins, surface spines and internal air spaces) of demonstrated or suggested adaptive value to the gallwasp have evolved repeatedly. We discuss these results in the light of existing hypotheses on the adaptive signi¢cance of gall structure. Keywords: galls; Cynipidae; enemy-free space; extended phenotype; Andricus layers of woody or spongy tissue, complex air spaces within 1.
    [Show full text]
  • Calameuta Konow 1896 Trachelastatus Morice and Durrant 1915 Syn
    105 NOMINA INSECTA NEARCTICA Calameuta Konow 1896 Trachelastatus Morice and Durrant 1915 Syn. Monoplopus Konow 1896 Syn. Neateuchopus Benson 1935 Syn. Haplocephus Benson 1935 Syn. Microcephus Benson 1935 Syn. Calameuta clavata Norton 1869 (Phylloecus) Trachelus tabidus Fabricius 1775 (Sirex) Sirex macilentus Fabricius 1793 Syn. Cephus Latreille 1802 Cephus mandibularis Lepeletier 1823 Syn. Astatus Jurine 1801 Unav. Cephus nigritus Lepeletier 1823 Syn. Perinistilus Ghigi 1904 Syn. Cephus vittatus Costa 1878 Syn. Peronistilomorphus Pic 1916 Syn. Calamenta [sic] johnsoni Ashmead 1900 Syn. Fossulocephus Pic 1917 Syn. Pseudocephus Dovnar-Zapolskii 1931 Syn. Cephus cinctus Norton 1872 (Cephus) CERAPHRONIDAE Cephus occidentalis Riley and Marlatt 1891 Syn. Cephus graenicheri Ashmead 1898 Syn. Cephus pygmaeus Linnaeus 1766 (Sirex) Tenthredo longicornis Geoffroy 1785 Syn. Aphanogmus Thomson 1858 Tenthredo polygona Gmelin 1790 Syn. Banchus spinipes Panzer 1801 Syn. Aphanogmus bicolor Ashmead 1893 (Aphanogmus) Astatus floralis Klug 1803 Syn. Aphanogmus claviger Kieffer 1907 Syn. Banchus viridator Fabricius 1804 Syn. Ceraphron reitteri Kieffer 1907 Syn. Cephus subcylindricus Gravenhorst 1807 Syn. Aphanogmus canadensis Whittaker 1930 (Aphanogmus) Cephus leskii Lepeletier 1823 Syn. Aphanogmus dorsalis Whittaker 1930 (Aphanogmus) Cephus atripes Stephens 1835 Syn. Aphanogmus floridanus Ashmead 1893 (Aphanogmus) Cephus flavisternus Costa 1882 Syn. Aphanogmus fulmeki Szelenyi 1940 (Aphanogmus) Cephus clypealis Costa 1894 Syn. Aphanogmus parvulus Roberti 1954 Syn. Cephus notatus Kokujev 1910 Syn. Aphanogmus fumipennis Thomson 1858 (Aphanogmus) Cephus tanaiticus Dovnar-Zapolskii 1926 Syn. Aphanogmus grenadensis Ashmead 1896 Syn. Aphanogmus formicarius Kieffer 1905 Syn. Hartigia Schiodte 1838 Ceraphron formicarum Kieffer 1907 Syn. Cerobractus Costa 1860 Syn. Aphanogmus clavatus Kieffer 1907 Syn. Macrocephus Schlechtendal 1878 Syn. Cerphron armatus Kieffer 1907 Syn. Cephosoma Gradl 1881 Syn.
    [Show full text]
  • National Oak Gall Wasp Survey
    ational Oak Gall Wasp Survey – mapping with parabiologists in Finland Bess Hardwick Table of Contents 1. Introduction ................................................................................................................. 2 1.1. Parabiologists in data collecting ............................................................................. 2 1.2. Oak cynipid gall wasps .......................................................................................... 3 1.3. Motivations and objectives .................................................................................... 4 2. Material and methods ................................................................................................ 5 2.1. The volunteers ........................................................................................................ 5 2.2. Sampling ................................................................................................................. 6 2.3. Processing of samples ............................................................................................ 7 2.4. Data selection ........................................................................................................ 7 2.5. Statistical analyses ................................................................................................. 9 3. Results ....................................................................................................................... 10 3.1. Sampling success .................................................................................................
    [Show full text]
  • Butlleti 71.P65
    Butll. Inst. Cat. Hist. Nat., 71: 83-95. 2003 ISSN: 1133-6889 GEA, FLORA ET FAUNA The life cycle of Andricus hispanicus (Hartig, 1856) n. stat., a sibling species of A. kollari (Hartig, 1843) (Hymenoptera: Cynipidae) Juli Pujade-Villar*, Roger Folliot** & David Bellido* Rebut: 28.07.03 Acceptat: 01.12.03 Abstract and so we consider A. mayeti and A. niger to be junior synonyms of A. hispanicus. Finally, possible causes of the speciation of A. kollari and The marble gallwasp, Andricus kollari, common A. hispanicus are discussed. and widespread in the Western Palaeartic, is known for the conspicuous globular galls caused by the asexual generations on the buds of several KEY WORDS: Cynipidae, Andricus, A. kollari, A. oak species. The sexual form known hitherto, hispanicus, biological cycle, sibling species, formerly named Andricus circulans, makes small sexual form, speciation, distribution, morphology, gregarious galls on the buds of Turkey oak, A. mayeti, A. burgundus. Quercus cerris; this oak, however, is absent from the Iberian Peninsula, where on the other hand the cork oak, Q. suber, is present. Recent genetic studies show the presence of two different Resum populations or races with distribution patterns si- milar to those of Q. cerris and Q. suber. We present new biological and morphological Cicle biològic d’Andricus hispanicus (Hartig, evidence supporting the presence of a sibling 1856) una espècie bessona d’A. kollari (Hartig, species of A. kollari in the western part of its 1843) (Hymenoptera: Cynipidae) range (the Iberian Peninsula, southern France and North Africa), Andricus hispanicus n. stat.. Biological and morphological differences separating these Andricus kollari és una espècie molt comuna dis- two species from other closely related ones are tribuida a l’oest del paleartic coneguda per la given and the new sexual form is described for the gal·la globular i relativament gran de la generació first time.
    [Show full text]
  • Hawai'i Landscape Plant Pest Guide: Mites and Gall-Forming Insects
    Insect Pests February 2015 IP-35 Hawai‘i Landscape Plant Pest Guide: Mites And Gall-Forming Insects Arnold Hara & Ruth Niino-DuPonte Department of Plant & Environmental Protection Sciences Coconut Mite (Aceria guerreronis) Identification and Damage • Mites are microscopic and translucent, and may appear only as a silvery patch when viewed with a 10x hand lens. • Coconut mite populations peak about half way through the 12-month-long development of coconut fruit, and decline so that very few, if any, mites remain on mature coconuts. • Coconut mites disperse by wind or by being carried on insects or birds. Perianth of coconut In dense plantings, mites may be able to crawl between plants. • Mites pierce tender tissue under the perianth protecting the stem end of immature coconut fruit. As fruit matures, the damaged tissue emerges as a pale patch from the perianth. When exposed to air, the tissue develops a cork-like surface with deep cracks. • Fruits may prematurely drop or be deformed, stunted, and scarred. • The coconut mite appears to only affect coconut palms; coconut palm varieties and related species may differ in their susceptibility to this mite. Corky tissue emerges from perianth What to Do • Prune all coconuts in all stages of development to eliminate coconut mite populations. • Predatory mites and some fungi (especially under humid conditions) attack the coconut mite but may not be sufficient to control heavy infestations. • Select coconut palm varieties that are less susceptible to coconut mites. • Contact miticides need to be applied frequently and continuously to provide control. Miticides must be EPA registered for use on coconut for Closeup of corky damage human consumption of edible coconut flesh.
    [Show full text]
  • The Beat Sheet
    Subscribe Past Issues Translate RSS View this email in your browser The Beat Sheet Newsletter of the Frost Entomological Museum Fall 2020 Note: Our public museum is still closed due to COVID-19 safety precautions and Penn State regulations. We will let you know when we receive more information. Thank you for your patience! New Species Discovery? Oak gall wasps (Cynipoidea) have been the dominant research interest of Frost personnel over the past few months. Through regular monitoring of local oak populations, we've found some truly striking galls and made surprising observations along the way. Most exciting, perhaps, is that there seem to be 3 gall inquilines that have been reared from Philonix nigra and Callirhytis favosa galls that do not key to any known species nor do they match any known species descriptions. Perhaps they are new to science! We still need to verify this result with a comprehensive look at their morphology and by sequencing their DNA, but the project already is yielding exciting discoveries. Above: Gall created by Philonix nigra (left) and Callirhytis favosa (right) that unknown inquilines were reared from. Guide to the Gall Wasps of the Eastern US — Coming soon! Museum Director Andy Deans has taken sabbatical this fall to devote time and energy into developing a resource that will serve as a guide to oak galls wasps of the Eastern US. The current sources, mainly books by Ephraim Felt (1940) and Weld (1959), need a lot of updating and a better, more field guide-like layout. He’s compiling species’s natural history data, including seasonal phenology, host use, gall characteristics, and differences in biology and behavior of the alternating generations where they occur.
    [Show full text]
  • Gall-Making Insects and Mites Michael Merchant*
    E-397 9/13 Gall-Making Insects and Mites Michael Merchant* A gall is an abnormal swelling of plant tissue. It can es associated with feeding, by insect or mite excre- be caused by mechanical injury or by several species tions, or simply by the presence of the insect or mite of insects, mites, nematodes, fungi and bacteria. In in or on the plant tissue. Once stimulated, the plant fact, there are more than 2,000 species of gall-making produces gall tissue to surround the egg or immature insects in the United States. The association between insect or mite. As it grows, the gall and the insect/mite the gall-making organism and the host plant is usu- use nutrients from the host plant. Gall makers may ally quite specific. Different organisms produce galls live within individual chambers or within commu- of characteristic size, shape and color. These visual nal chambers inside galls, depending on the species. characteristics are useful in species identification. This Mature galls stop growing and cease to use host plant publication has basic information on the biology and nutrients. The developing insects or mites remain pro- ecology of common gall-making insects and mites and tected inside mature galls, grazing on the ready food suggestions for managing galls. source. Gall Development Damage and Host Plants Galls usually occur on leaves and stems, but also Gall-making insects are generally not considered may occur on flowers, fruits, twigs, branches, trunks pests, and some galls are even considered attractive and roots. Some galls are easy to recognize and the and are used in flower arrangements and other crafts.
    [Show full text]
  • Torymus Sinensis Against the Chestnut Gall Wasp Dryocosmus Kuriphilus in the Canton Ticino, Switzerland
    | January 2011 Evaluating the use of Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus in the Canton Ticino, Switzerland Authors Aebi Alexandre, Agroscope ART Schoenenberger Nicola, Tulum SA and Bigler Franz, Agroscope ART Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus | January 2011 1 Zürich/Caslano, January 2011 Authors’ affiliation: Alexandre Aebi and Franz Bigler Nicola Schoenenberger Agroscope Reckenholz-Tänikon TULUM SA Research Station ART Via Rompada 40 Biosafety 6987 Caslano Reckenholzstrasse 191 Switzerland 8046 Zürich Tel: +41 91 606 6373 Switzerland Fax: +41 44 606 6376 Tel: +41 44 377 7669 [email protected] Fax: +41 44 377 7201 [email protected] This work was financed by the Swiss Federal Office for the Environment (FOEN) This work was done in collaboration with B. Bellosi and E. Schaltegger (TULUM SA) Cover figure: Empty chestnut gall in Stabio, February 2010 (Picture:TULUM SA) All maps used in figures and appendices (except Fig. 6): ©swisstopo, license number: DV053809.1 Map in figure 6: © Istituto Geografico, De Agostini 1982–1988 ISBN 978-3-905733-20-4 © 2010 ART 2 Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus | January 2011 Table of contents Table of contents Abstract 5 1. Introduction 6 2. Mission and methods 7 3. Presence and degree of infestation of Dryocosmus kuriphilus in Switzerland 9 4. Invasion corridors of Dryocosmus kuriphilus towards Switzerland 11 5. Potential economic and ecological damage caused by Dryocosmus kuriphilus in Switzerland 14 6. Release of the parasitoid Torymus sinensis in the Piedmont Region, Italy 17 7. Potential benefits and damage due to the release of Torymus sinensis 18 8.
    [Show full text]
  • Invasion by the Chestnut Gall Wasp in Italy Causes Significant Yield Loss In
    Agricultural and Forest Entomology (2014), 16,75–79 DOI: 10.1111/afe.12036 Invasion by the chestnut gall wasp in Italy causes significant yield loss in Castanea sativa nut production ∗ ∗ ∗ Andrea Battisti , Isadora Benvegnu` †, Fernanda Colombari and Robert A. Haack‡ ∗Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, 35020, Legnaro, Italy, †Veneto Agricoltura, Agripolis, 35020, Legnaro, Italy, and ‡USDA Forest Service, Northern Research Station, 1407 South Harrison Road, East Lansing, MI, 48823, U.S.A. Abstract 1 The Asian chestnut gall wasp Dryocosmus kuriphilus Yasumatsu (Hymenoptera Cynipidae) is an invasive species in chestnut forests and orchards in many parts of the world. 2 Nuts produced by the European chestnut (Castanea sativa Miller) are important in human food and culture, and as a component in food webs in forest ecosystems. 3 Severe infestations are reported to reduce nut yield, although precise data are lacking because of large natural year-to-year variability in yield. 4 The recent colonization of chestnut orchards in north-eastern Italy, where nut yield has been continuously and precisely recorded for several years, offered an opportunity to calculate the impact of gall wasp infestation level on yield. 5 The nut yield of C. sativa chestnut trees was negatively related to the gall wasp infestation level, with losses as high as 80% being reported when the number of current-year galls was above six galls per 50-cm twig. 6 Yield losses can be explained by direct and indirect factors related to gall formation, and a fuller understanding of the mechanisms involved could identify possible mitigation measures.
    [Show full text]