Ownership and Publication of Mathematika Mathematika Was Founded in the Early 1950S by Harold Davenport and Is Owned by Mathematika University College London

Total Page:16

File Type:pdf, Size:1020Kb

Ownership and Publication of Mathematika Mathematika Was Founded in the Early 1950S by Harold Davenport and Is Owned by Mathematika University College London Ownership and Publication of Mathematika Mathematika was founded in the early 1950s by Harold Davenport and is owned by Mathematika University College London. Since 2010, the journal has been published on behalf of its owner by the London Mathematical Society (LMS). The LMS celebrated its 150th A JOURNAL OF PURE AND APPLIED MATHEMATICS anniversary in 2015; it is the major British learned Society for mathematics and publishes eleven other journals, five of which are in collaboration with other learned societies. Editorial Board Cambridge University Press prints and distributes Mathematika under agreement with the London Mathematical Society. Managing Editor All articles are available electronically via Cambridge Core. ALEX SOBOLEV, University College London Analysis, spectral theory, PDEs Aims and Scope Mathematika publishes both pure and applied mathematical articles of the highest quality. KEITH BALL FRS, University of Warwick FRANCIS JOHNSON, University College London The traditional emphasis has been towards the purer side of mathematics but applied Discrete geometry, functional analysis, Algebra, geometric group theory and topology mathematics and articles addressing both aspects are equally welcome. information theory MINHYONG KIM, University of Oxford and Submission of Manuscripts IMRE BAR´ ANY´ , University College London Ewha Womans University Convex geometry with applications Number theory, algebraic geometry Authors wishing to submit a paper for publication should follow the guidelines available JONATHAN BENNETT, IMRE LEADER, University of Cambridge via the webpage www.lms.ac.uk/publications. Combinatorics, graphs University of Birmingham Authors will be asked to assign copyright to University College London prior to Classical harmonic analysis ALEXANDER MOVCHAN, University of Liverpool publication. Mathematical methods of solids, boundary value WILLIAM CHEN, Macquarie University Sydney problems No paper should have been published or be under consideration for publication elsewhere. Number theory, uniform distribution, ASSAF NAOR, Princeton University Nor may the paper be submitted elsewhere while it remains under consideration by discrepancy theory Analysis, geometry Mathematika. TIMOTHY GOWERS FRS, FRANK SMITH, University College London Offprints University of Cambridge Industrial and biomedical modelling Analysis, combinatorics KANNAN SOUNDARARAJAN, Stanford University A URL giving free access to the final published article will be provided free of charge. ANDREW GRANVILLE, Number theory Offprints can be ordered on the form which will accompany the page proofs. Universite´ de Montreal´ and ROBERT VAUGHAN FRS, Printed back numbers University College London Pennsylvania State University Number theory, additive combinatorics Analytic number theory Orders for volume 56 (2010) onwards should be sent to Cambridge University Press. Printed copies of volume 55 (2009) and earlier volumes are available from the Department Subscriptions of Mathematics, University College London. Please contact [email protected]. Mathematika is published in three issues in 2018; this issue is January 2018. The subscription price for 2018 is £191 ($306 in USA, Canada and Mexico) which includes print and electronic access. The Copying electronic-only access price for 2018 is £162 ($256 in USA, Canada and Mexico). Single parts cost £73 ($117 in USA, Canada and Mexico). Prices include delivery by air where appropriate. EU subscribers who This journal is registered with the Copyright Clearance Centre, 222 Rosewood Drive, are not registered for VAT should add VAT at their country’s rate. VAT-registered subscribers should provide Danvers, MA 01923, USA. Organizations in the USA that are registered with the CCC their VAT registration number. may therefore copy material beyond the limits permitted by sections 107 and 108 of US Orders, which must be accompanied by payment, should be sent to a subscription agent, book-seller, or direct copyright law subject to payment to CCC of the per-copy fee. This consent does not extend to Cambridge University Press, Journals Fulfilment Department, UPH, Shaftesbury Road, Cambridge CB2 8BS, to multiple copying for promotional and commercial purposes. Code 0025-5793/2018. UK or, in the USA, Canada and Mexico, Cambridge University Press, Journals Fulfillment Department, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. Japanese prices are available from Kinokuniya Organizations authorized by the Copyright Licensing Agency may also copy material Company Ltd, PO Box 55, Chitose, Tokyo 156, Japan. Periodicals postage is paid at New York, NY and subject to the usual conditions. For all other use, permission should be sought from additional mailing offices. POSTMASTER: send address changes in the USA, Canada and Mexico to Cambridge or the American branch of Cambridge University Press. Mathematika, Cambridge University Press, Journals Fulfillment Department, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. Published by the London Mathematical Society on behalf of University College London. This journal is included in the Cambridge Core service. Further information, and online access for This journal has been printed on FSC-certified paper and cover board. See www.fsc.org. subscribers, is available at https://www.cambridge.org/mtk. Typeset by Sunrise Setting Ltd, Brixham, UK. c University College London, 2018 Printed in the UK by Bell and Bain Ltd. Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.139, on 23 Sep 2021 at 20:29:37, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579318000098 Mathematika VOLUME 64 PART 1 2018 Mohammad N. Ivaki A local uniqueness theorem for minimizers of Petty’s conjectured projection inequality 1–19 Joni Teräväinen The Goldbach problem for primes that are sums of two squares plus one 20–70 Péter Komjáth Set mappings with free sets which are arithmetic progressions 71–76 0 0 L. Olsen On the Πγ -completeness and Σγ -completeness of multifractal decomposition sets 77–114 Caïus Wojcik and Luca Q. Zamboni Monochromatic factorizations of VOLUME 64 PART 1 2018 words and periodicity 115–123 Daniel Hug and Zakhar Kabluchko An inclusion–exclusion identity for normal cones of polyhedral sets 124–136 J. C. Andrade, S. M. Gonek and J. P. Keating Truncated product VOLUME representations for L-functions in the hyperelliptic ensemble 137–158 András Biró Local average of the hyperbolic circle problem for Fuchsian groups 159–183 64 PART Hayato Kohama and Yoshinori Mizuno Kernel functions of the twisted symmetric square of elliptic modular forms 184–210 1 2018 Rafał Latała and Marta Strzelecka Comparison of weak and strong moments for vectors with independent coordinates 211–229 Aled Walker The primes are not metric Poissonian 230–236 Xianchang Meng Large bias for integers with prime factors in arithmetic progressions 237–252 R. Lutowski, N. Petrosyan and A. Szczepański Classification of spin structures on four-dimensional almost-flat manifolds 253–266 Dong Han Kim, Michał Rams and Baowei Wang Hausdorff dimension of the set approximated by irrational rotations 267–283 Tuomas Hytönen and Emil Vuorinen A two-weight inequality between p 2 p L (` ) and L 284–302 Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.139, on 23 Sep 2021 at 20:29:37, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579318000098.
Recommended publications
  • Manjul Bhargava
    The Work of Manjul Bhargava Manjul Bhargava's work in number theory has had a profound influence on the field. A mathematician of extraordinary creativity, he has a taste for simple problems of timeless beauty, which he has solved by developing elegant and powerful new methods that offer deep insights. When he was a graduate student, Bhargava read the monumental Disqui- sitiones Arithmeticae, a book about number theory by Carl Friedrich Gauss (1777-1855). All mathematicians know of the Disquisitiones, but few have actually read it, as its notation and computational nature make it difficult for modern readers to follow. Bhargava nevertheless found the book to be a wellspring of inspiration. Gauss was interested in binary quadratic forms, which are polynomials ax2 +bxy +cy2, where a, b, and c are integers. In the Disquisitiones, Gauss developed his ingenious composition law, which gives a method for composing two binary quadratic forms to obtain a third one. This law became, and remains, a central tool in algebraic number theory. After wading through the 20 pages of Gauss's calculations culminating in the composition law, Bhargava knew there had to be a better way. Then one day, while playing with a Rubik's cube, he found it. Bhargava thought about labeling each corner of a cube with a number and then slic- ing the cube to obtain 2 sets of 4 numbers. Each 4-number set naturally forms a matrix. A simple calculation with these matrices resulted in a bi- nary quadratic form. From the three ways of slicing the cube, three binary quadratic forms emerged.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • LOO-KENG HUA November 12, 1910–June 12, 1985
    NATIONAL ACADEMY OF SCIENCES L OO- K EN G H U A 1910—1985 A Biographical Memoir by H E I N I H A L BERSTAM Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2002 NATIONAL ACADEMIES PRESS WASHINGTON D.C. LOO-KENG HUA November 12, 1910–June 12, 1985 BY HEINI HALBERSTAM OO-KENG HUA WAS one of the leading mathematicians of L his time and one of the two most eminent Chinese mathematicians of his generation, S. S. Chern being the other. He spent most of his working life in China during some of that country’s most turbulent political upheavals. If many Chinese mathematicians nowadays are making dis- tinguished contributions at the frontiers of science and if mathematics in China enjoys high popularity in public esteem, that is due in large measure to the leadership Hua gave his country, as scholar and teacher, for 50 years. Hua was born in 1910 in Jintan in the southern Jiangsu Province of China. Jintan is now a flourishing town, with a high school named after Hua and a memorial building celebrating his achievements; but in 1910 it was little more than a village where Hua’s father managed a general store with mixed success. The family was poor throughout Hua’s formative years; in addition, he was a frail child afflicted by a succession of illnesses, culminating in typhoid fever that caused paralysis of his left leg; this impeded his movement quite severely for the rest of his life.
    [Show full text]
  • Full History of The
    London Mathematical Society Historical Overview Taken from the Introduction to The Book of Presidents 1865-1965 ADRIAN RICE The London Mathematical Society (LMS) is the primary learned society for mathematics in Britain today. It was founded in 1865 for the promotion and extension of mathematical knowledge, and in the 140 years since its foundation this objective has remained unaltered. However, the ways in which it has been attained, and indeed the Society itself, have changed considerably during this time. In the beginning, there were just nine meetings per year, twenty-seven members and a handful of papers printed in the slim first volume of the ’s Society Proceedings. Today, with a worldwide membership in excess of two thousand, the LMS is responsible for numerous books, journals, monographs, lecture notes, and a whole range of meetings, conferences, lectures and symposia. The Society continues to uphold its original remit, but via an increasing variety of activities, ranging from advising the government on higher education, to providing financial support for a wide variety of mathematically-related pursuits. At the head of the Society there is, and always has been, a President, who is elected annually and who may serve up to two years consecutively. As befits a prestigious national organization, these Presidents have often been famous mathematicians, well known and respected by the mathematical community of their day; they include Cayley and Sylvester, Kelvin and Rayleigh, Hardy and Littlewood, Atiyah and Zeeman.1 But among the names on the presidential role of honour are many people who are perhaps not quite so famous today, ’t have theorems named after them, and who are largely forgotten by the majority of who don modern-day mathematicians.
    [Show full text]
  • The Riemann Hypothesis in Characteristic P in Historical Perspective
    The Riemann Hypothesis in Characteristic p in Historical Perspective Peter Roquette Version of 3.7.2018 2 Preface This book is the result of many years' work. I am telling the story of the Riemann hypothesis for function fields, or curves, of characteristic p starting with Artin's thesis in the year 1921, covering Hasse's work in the 1930s on elliptic fields and more, until Weil's final proof in 1948. The main sources are letters which were exchanged among the protagonists during that time which I found in various archives, mostly in the University Library in G¨ottingen but also at other places in the world. I am trying to show how the ideas formed, and how the proper notions and proofs were found. This is a good illustration, fortunately well documented, of how mathematics develops in general. Some of the chapters have already been pre-published in the \Mitteilungen der Mathematischen Gesellschaft in Hamburg". But before including them into this book they have been thoroughly reworked, extended and polished. I have written this book for mathematicians but essentially it does not require any special knowledge of particular mathematical fields. I have tried to explain whatever is needed in the particular situation, even if this may seem to be superfluous to the specialist. Every chapter is written such that it can be read independently of the other chapters. Sometimes this entails a repetition of information which has al- ready been given in another chapter. The chapters are accompanied by \summaries". Perhaps it may be expedient first to look at these summaries in order to get an overview of what is going on.
    [Show full text]
  • Graduate Texts in Mathematics 74
    Graduate Texts in Mathematics 74 Editorial Board F. W. Gehring P. R. Halmos (Managing Editor) C. C. Moore Harold Davenport Multiplicative Number Theory Second Edition Revised by Hugh L. Montgomery I Springer-Verlag Berlin Heidelberg GmbH Harold Davenport Hugh L. Montgomery (Deceased) Department of Mathematics Cambridge University University of Michigan Cambridge Ann Arbor, MI48109 England USA Editorial Board P. R. Halmos F. W. Gehring Managing Editor Department of Mathematics Department of Mathematics University of Michigan Indiana University Ann Arbor, MI 48109 Bloomington, IN 47401 USA USA C. C. Moore Department of Mathematics University of California Berkeley, CA 94720 USA AMS Subject Classification (1980): 10-0 I, IOHxx Library of Congress Cataloging in Publication Data Davenport, Harold, 1907-1969 Multiplicative number theory. (Graduate texts in mathematics; 74) Revised by Hugh Montgomery. Bibliography: p. Includes index. 1. Numbers, Theory of. 2. Numbers, Prime. I. Montgomery, Hugh L. II. Title. III. Series. QA241.D32 1980 512'.7 80-26329 The first edition of this book was published by Markham Publishing Company, Chicago, IL, 1967. All rights reserved. No part of this book may be translated or reproduced in any form with­ out written permission from the copyright holder. @ 1967, 1980 by Ann Davenport. Originally published by Springer-Verlag Berlin Heidelberg New York in 1980. Softcover reprint of the hardcover 2nd edition 1980 9 8 7 6 5 4 3 2 1 ISBN 978-1-4757-5929-7 ISBN 978-1-4757-5927-3 (eBook) DOI 10.1007/978-1-4757-5927-3 CONTENTS
    [Show full text]
  • The Role of GH Hardy and the London Mathematical Society
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 30 (2003) 173–194 www.elsevier.com/locate/hm The rise of British analysis in the early 20th century: the role of G.H. Hardy and the London Mathematical Society Adrian C. Rice a and Robin J. Wilson b,∗ a Department of Mathematics, Randolph-Macon College, Ashland, VA 23005-5505, USA b Department of Pure Mathematics, The Open University, Milton Keynes MK7 6AA, UK Abstract It has often been observed that the early years of the 20th century witnessed a significant and noticeable rise in both the quantity and quality of British analysis. Invariably in these accounts, the name of G.H. Hardy (1877–1947) features most prominently as the driving force behind this development. But how accurate is this interpretation? This paper attempts to reevaluate Hardy’s influence on the British mathematical research community and its analysis during the early 20th century, with particular reference to his relationship with the London Mathematical Society. 2003 Elsevier Inc. All rights reserved. Résumé On a souvent remarqué que les premières années du 20ème siècle ont été témoins d’une augmentation significative et perceptible dans la quantité et aussi la qualité des travaux d’analyse en Grande-Bretagne. Dans ce contexte, le nom de G.H. Hardy (1877–1947) est toujours indiqué comme celui de l’instigateur principal qui était derrière ce développement. Mais, est-ce-que cette interprétation est exacte ? Cet article se propose d’analyser à nouveau l’influence d’Hardy sur la communauté britannique sur la communauté des mathématiciens et des analystes britanniques au début du 20ème siècle, en tenant compte en particulier de son rapport avec la Société Mathématique de Londres.
    [Show full text]
  • The Riemann Hypothesis in Characteristic P in Historical Perspective
    The Riemann Hypothesis in Characteristic p in Historical Perspective Peter Roquette Version of 3.7.2018 2 Preface This book is the result of many years' work. I am telling the story of the Riemann hypothesis for function fields, or curves, of characteristic p starting with Artin's thesis in the year 1921, covering Hasse's work in the 1930s on elliptic fields and more, until Weil's final proof in 1948. The main sources are letters which were exchanged among the protagonists during that time which I found in various archives, mostly in the University Library in G¨ottingen but also at other places in the world. I am trying to show how the ideas formed, and how the proper notions and proofs were found. This is a good illustration, fortunately well documented, of how mathematics develops in general. Some of the chapters have already been pre-published in the \Mitteilungen der Mathematischen Gesellschaft in Hamburg". But before including them into this book they have been thoroughly reworked, extended and polished. I have written this book for mathematicians but essentially it does not require any special knowledge of particular mathematical fields. I have tried to explain whatever is needed in the particular situation, even if this may seem to be superfluous to the specialist. Every chapter is written such that it can be read independently of the other chapters. Sometimes this entails a repetition of information which has al- ready been given in another chapter. The chapters are accompanied by \summaries". Perhaps it may be expedient first to look at these summaries in order to get an overview of what is going on.
    [Show full text]
  • The Riemann Hypothesis in Characteristic P, Its Origin and Development Part 2
    Mitt. Math. Ges. Hamburg 22 (2004), 1–68 The Riemann hypothesis in characteristic p, its origin and development Part 2. The first steps by Davenport and Hasse Von Peter Roquette (Heidelberg) Abstract This paper is a continuation of Part 1. We report on how Hasse met Davenport in 1931, how the latter introduced his friend Hasse to the problem on diophantine congruences, and how Artin identified this problem with the Riemann hypothesis for function fields. We discuss Hasse’s first proof for elliptic fields which used classic uniformization and complex multiplication; the idea for this developed during a discussion with Mordell about Siegel’s great paper on binary diophantine equations. Contents 1 Introduction 2 2 Biographic Notes 6 2.1 Hasse 1930 . 6 2.2 Mordell 1930 . 8 2.3 Davenport 1930 . 11 3 Estimating character sums and exponential sums. 14 3.1 Distribution of quadratic residues . 14 3.2 Diophantine congruences . 17 3.3 Reducing exponents . 18 3.4 The Hamburg colloquium and Artin’s comment . 24 3.5 Summary . 29 4 Hasse’s new point of view 30 4.1 The G¨ottingen colloquium . 30 4.2 The GF-method . 37 Peter Roquette 4.3 The Marburg seminar and Hasse’s survey article . 39 4.4 Summary . 40 5 The elliptic case: Hasse’s first proof 41 5.1 The breakthrough . 41 5.2 The problem . 44 5.3 The proof . 46 5.3.1 Lifting of the absolute invariant . 48 5.3.2 Uniformization . 53 5.3.3 Lifting of rational points . 55 5.3.4 Normalization .
    [Show full text]
  • Analytic Methods for Diophantine Equations and Diophantine Inequalities, Second Edition H
    Cambridge University Press 0521605830 - Analytic Methods for Diophantine Equations and Diophantine Inequalities, Second Edition H. Davenport Frontmatter More information Analytic Methods for Diophantine Equations and Diophantine Inequalities Harold Davenport was one of the truly great mathematicians of the twen- tieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophan- tine inequalities. It provides an excellent introduction to a timeless area of number theory that is still as widely researched today as it was when the book originally appeared. The three main themes of the book are Waring’s problem and the representation of integers by diagonal forms, the solubility in integers of systems of forms in many variables, and the solubility in integers of diagonal inequalities. For the second edition of the book a comprehensive foreword has been added in which three leading experts describe the modern context and recent developments. A complete list of references has also been added. © Cambridge University Press www.cambridge.org Cambridge University Press 0521605830 - Analytic Methods for Diophantine Equations and Diophantine Inequalities, Second Edition H. Davenport Frontmatter More information Analytic Methods for Diophantine Equations and Diophantine Inequalities Second edition H. Davenport This edition edited and prepared for publication by T. D. Browning Oxford University © Cambridge
    [Show full text]
  • A Case Study of Mathematical Exchange
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 19-2 | 2015 Circulations et échanges mathématiques Partnership and Partition: A Case Study of Mathematical Exchange Adrian Rice Electronic version URL: http://journals.openedition.org/philosophiascientiae/1113 DOI: 10.4000/philosophiascientiae.1113 ISSN: 1775-4283 Publisher Éditions Kimé Printed version Date of publication: 25 May 2015 Number of pages: 115-134 ISSN: 1281-2463 Electronic reference Adrian Rice, « Partnership and Partition: A Case Study of Mathematical Exchange », Philosophia Scientiæ [Online], 19-2 | 2015, Online since 09 June 2015, connection on 04 November 2020. URL : http://journals.openedition.org/philosophiascientiae/1113 ; DOI : https://doi.org/10.4000/ philosophiascientiae.1113 Tous droits réservés Partnership and Partition: A Case Study of Mathematical Exchange Adrian Rice Randolph-Macon College, Ashland (USA) Résumé : Cela fait maintenant un peu plus de cent ans qu’a débuté le partena- riat entre l’analyste de Cambridge G. H. Hardy et le génie indien des mathéma- tiques Srinivasa Ramanujan, partenariat qui constitue l’une des plus célèbres collaborations de l’histoire des mathématiques. La manière dont Ramanujan est arrivé à Cambridge et l’accueil enthousiaste qu’il a reçu de la part de la communauté mathématique britannique sont aujourd’hui presque légendaires. Mais, dans le contexte de ce numéro, cet événement fournit une étude de cas intéressante d’échange mathématique. Cet article examine un résultat particu- lier dû au partenariat créatif entre Hardy et Ramanujan, leur article de 1918 sur les partitions, et montre que l’échange que leur travail sur cet article a provoqué a été en partie facilité par leur appartenance à la première société savante pour la promotion de la recherche mathématique en Grande-Bretagne : la London Mathematical Society.
    [Show full text]
  • NEWSLETTER No
    NEWSLETTER No. 454 January 2016 LMS 150TH ANNIVERSARY Mathematics Festival at THE LONDON SCIENCE MUSEUM What's your Angle? Uncovering Maths See report on page 3 SOCIETY MEETINGS AND EVENTS • 26 February: Mary Cartwright Lecture, London page 12 • 21 July: Society Meeting at the 7ECM, Berlin • 21 March: Society Meeting at the BMC, Bristol page 21 • 11 November: Graduate Student Meeting, London • 21–25 March: LMS Invited Lectures, Loughborough • 11 November: Annual General Meeting, London • 8 July: Graduate Student Meeting, London • 20 December: South West & South Wales Regional • 8 July: Society Meeting, London Meeting, Bath NEWSLETTER ONLINE: newsletter.lms.ac.uk @LondMathSoc LMS NEWSLETTER http://newsletter.lms.ac.uk Contents No. 454 January 2016 22 32 150th Anniversary Events Heidelberg Laureate Forum..................41 Departmental Celebrations....................18 Integrable Systems..................................45 What's Your Angle? Uncovering Maths...3 Mathematics Emerging..........................44 Awards Modern Topics in Nonlinear PDE and Geometric Analysis...............................31 2 Christopher Zeeman Medal 2016...........13 Singularities and Applications...............43 Louis Bachelier Prize 2016........................39 Why be Noncommutative?.....................44 LMS Honorary Membership.....................7 ICME-13 Bursaries....................................19 News Ramanujan Prize 2016............................37 European News.......................................25 Royal Society Medals and Awards 2016...37
    [Show full text]