The Current Status of the Fermi/Gamma Ray Burst Monitor (GBM) and the Magnetar Key Project

Total Page:16

File Type:pdf, Size:1020Kb

The Current Status of the Fermi/Gamma Ray Burst Monitor (GBM) and the Magnetar Key Project The current status of the Fermi/Gamma ray Burst Monitor (GBM) and the Magnetar Key Project C. Kouveliotou (NASA/MSFC) on behalf of the GBM and the Magnetar teams The Fermi Observatory Launched 2008 June 11 Large AreaTelescope (LAT) 20 MeV ->300 GeV Gamma-ray Burst Monitor (GBM) NaI and BGO Detectors 8 keV - 40 MeV KEY FEATURES Spacecra Partner: General Dynamics • Large field of view LAT: 20% of the sky at any instant; in sky survey mode, expose all parts of sky for ~30 minutes every 3 hours. GBM: whole unocculted sky at any time. • Over 7 decades energy range largely unexplored band 10 GeV - 100 GeV GBM • 4 x 3 NaI Detectors with different orientations. • 2 x 1 BGO Detector either side of spacecraft. • View entire sky while maximizing sensitivity to events seen in common with the LAT The Large Area Telescope (LAT) GBM BGO detector. 200 keV -- 40 MeV 126 cm2, 12.7 cm Spectroscopy Bridges gap between NaI and LAT. GBM NaI detector. 8 keV -- 1000 keV 126 cm2, 1.27 cm Triggering, localization, spectroscopy. • GBM Triggered sources – Gamma-ray bursts (GRBs) – Soft gamma repeaters (SGRs) aka magnetars – Terrestrial gamma flashes (TGFs) – Short transients detected by on-board trigger algorithm – Solar Flares • Non-triggered sources – Pulsed sources detected by power spectral analysis and/or epoch folding – Longer-term transients and persistent sources detected by Earth occultation Paciesas et al. 2010 – Locations Trigger Summary (July 12, 2008 - • RA, Dec July 11, 2009) – Durations Gamma-Ray Bursts 258 • (t50, t90) in 50–300 keV – Peak flux (ph/cm2-s) Soft Gamma Repeaters 168 • 64 ms, 256 ms, 1024 ms Terrestrial Gamma 12 • 50–300 keV, 10–1000 keV Flashes – Fluence (erg/cm2) Solar Flares 1 • 50– 300 keV, 10–1000 keV – Light curves Particles (local or distant) 17 Commanded tests 62 Will be accessible on-line through FSSC Others (sources, accidentals, 35 unclassifiable) Total 553 Current total number of GRBs detected: 448 Goldstein et al. 2010, Preece et al. 2010 1. The “Peak Flux and Fluence” Spectral Catalog: Two Spectra from all but the weakest GRBs: 2.048 s Peak Flux Spectrum > 3.5 sigma integrated Fluence Spectrum Approximately 200 bursts per year (BATSE Heritage: Mallozzi et al. 1995; Goldstein et al. 2010) 2. The “Time-Resolved” Spectral Catalog for Bright Bursts: At least two spectra for each burst, fit as a time sequence: > 15 sigma integration for each spectrum Approximately 50 bursts per year (BATSE Heritage: Preece et al. 2000; Kaneko et al. 2006) Four Spectral Models Fit to each spectrum: – Power Law: A & α – Exponentially-attenuated Power Law (“Comptonized”): A, α & Epeak – Band function: A, α, β & Epeak – Smoothly-Broken Power Law: A, α, β, Δ & Ebreak Will be accessible on-line through FSSC Band (Cstat: 699/607 dof) Cutoff PL + PL (Cstat: 689/606 dof) 10000 10000 1000 α β 1000 100 100 PL Cutoff PL 10 10 Epeak 6 6 0 0 ‐6 ‐6 10 100 1000 10000 10 100 1000 10000 Energy (keV) Energy (keV) Cutoff PL+PL prefered over the Band function => Additional component ? Guiriec et al. 2010 Guiriec et al. 2010 100 8 to 200 keV 1600 80 1200 60 800 40 20 400 0 0 9 1600 8 1 to 38 MeV 7 1200 6 5 4 800 3 2 400 1 0 0 0.05 0.1 0.15 0.2 0 Time since GBM trigger in seconds Fermi/GBM Accreting Pulsars GBM Key Project PI: M. Finger Persistent Sources Her X-1 1.24 1.70 Eclipsing LMXB Cen X-3 4.80 2.09 Eclipsing Disk-fed HMXB 4U 1626-67* 7.63 0.023 Super-Compact LMXB OAO 1657-415 37.1 10.4 Eclipsing Wind-fed HMXB GX 1+4 158 1161 Symbiotic Binary (red giant+ns) Vela X-1 283 8.96 Eclipsing Wind-fed HMXB 4U 1538-52 525 3.73 Eclipsing Wind-fed HMXB GX 301-2 686 41.5 Wind-fed HMXB Transient Sources V 0332+53 4.37 34.2 Be/X-ray Binary 2S 1417-624 17.5 42.1 Likely Be/X-ray Binary Swift J0513.4-6547 27.3 ? Likely Be/X-ray Binary in LMC EXO 2030+375 41.3 46.0 Be/X-ray Binary Cep X-4 66.3 ? Be/X-ray Binary GRO J1008-57 93.7 248 Be/X-ray Binary A 0535+26 103 111 Be/X-ray Binary MXB 0656-072 160 ? Be/X-ray Binary LS V +44 17 205 ? Persistent Be/X-ray Binary? GX 304-1 275 132 Be/X-ray Binary A 1118-615 407 ? Be/X-ray Binary *Camero-Arranz et al. 2009 Times of Transient Outbursts October 2008 http://gammaray.msfc.nasa.gov/gbm/science/pulsars/ • Twelve TGFs in year 1 Fishman et al. 2010 – Rate is higher now by ~8X, due to inclusion of BGO detectors in trigger algorithm – Over 50 to date • Duration < ~1 ms, maximum energy > ~40 MeV – High instantaneous rates imply significant deadtime & pulse pile-up • Associated with thunderstorms: – “Runaway electron” process produces gamma-rays – Sometimes GBM detects electrons & positrons directly Briggs et al 2010 WWLLN sferics others Connaughton et al. 2010 Two Well-separated, Double-Pulse TGFs seen with GBM, All Detectors – Time Profiles Narrowest Pulse seen with GBM, ~0.08 ms Weakest Pulse Fishman et al. 2010, TGF Catalog • Using the EOT we are currently monitoring 70 sources, including the Sun. • To date, we detect 8 of these sources above 100 keV: 1E 1740-29, Cen A, Crab, Cyg X-1, GRS 1915+105, Swift J1753.5-0127, XTE J1752-223, and GX339-4 (Case et al. 2010). • Preliminary detections for 55 sources below 100 keV (either > 10 sigma long-term average or activity coincident with other observatories) including Mrk 421 (Wilson-Hodge et al. 2010). • This is our “bright source” catalog and consists primarily of X- ray binaries, the Crab, and a few AGN (currently active transients and sources added by request). http://gammaray.msfc.nasa.gov/gbm/science/occultation/ PI: Chryssa Kouveliotou SGR Source Active Period Triggers Comments J0501+4516 08/22/08-09/03 26 New source at Perseus /08 arm 1806-20 11/29/08 1 Old source - reactivation J1550-5418 10/03/08-10/20 7 Known source – first time /08 117 exhibiting burst active 01/22/09-02/24 14 episodes /09 03/22/09-04/17 /09 J0418+5729 06/05/09 2 New source at Perseus arm SGR 1833-0832 discovered 10/03/19 with Swift and RXTE – no GBM detection http://gammaray.nsstc.nasa.gov/gbm/science/magnetars Magnetars are magnetically powered neutron stars ~17 are discovered to date – three in 2008-2010 – Only 2 extragalactic sources Discovered in X/γ-rays; radio, optical and IR observations: Short, soft repeated bursts . P = [2-11] s, P ~[10-11- 10-13]s/s . τspindown(P/2 P)= 2-220 kyrs . B~[1-10]x1014 G (mean surface dipole field: 3.2x1019√PP) Bright sources, L~1033–36 erg/s , >> rotational E-loss No evidence for binarity so far (fallback disks?) SNe associations? Neutron star populations which may comprise Magnetars: Soft Gamma Repeaters (SGRs) Anomalous X-ray Pulsars (AXPs) Dim Isolated Neutron Stars (DINs) Compact Central X-ray Objects (CCOs) Rotation Powered PSRs?! PSR J1846−0258 PSR J1846−0258 SGR 0418+5729 SGR 1833-0832 2008-2010: Good years for Magnetars! Fermi IPN Swift RXTE SGR 0501+4516 Swift triggered on 4 bursts on 22 August 2008 RXTE ToO program triggered ~4 hours after the first Swift trigger for 600 s P = 5.7620 s was reported ~ 9 hours after the first Swift trigger! . P = 7.4980x10-12 and B = 2.1 x 1014 G CXO HRC location: RA = 05h 01m 06.756s DEC = +45d 16m 33.92s (0.1” error) IR Counterpart with UKIRT, K~18.6 (Tanvir & Varricatt 2008) GBM triggered on 26 events from the source – total of 56 events in ~ 3.5 days BURSTS Suzaku data for 080826_136: Integrated spectrum best fit by 2 BB: kT1 = 3.3 keV, kT2 = 15.1 keV Enoto et al. 2009 GBM data for 080826_136 (common with Suzaku): Integrated spectrum can be fitted with two BB or one BB + PL kT1 = 8 keV, kT2 = 18 keV or kT = 11 keV, γ = -2.4 Watts et al. 2010 Lin Lin et al. 2010 PRE in thermonuclear bursts • Luminosity reaches Eddington limit, triggering Photospheric Radius Expansion (PRE). • Expanding layers cool, leading to a multi-peaked light curve. • Standard candle to measure a neutron star distance or mass/radius and hence equation of state. Watts et al 2010 PRE in thermonuclear bursts >10 keV 5-10 keV Counts/s 2-5 keV Time PRE in magnetar bursts • Identifying PRE during a magnetar burst would give us the magnetic Eddington limit. If the magnetic field is known (e.g. from timing) this would again constrain distance/equation of state. Miller 1995 • PRE can only occur under certain burst emission scenarios. A PRE burst will therefore also constrain the burst trigger mechanism, a major unknown. The first magnetar candidate PRE burst Other candidate PRE bursts being investigated! Watts et al. 2010 • Distance and field strength known. • Predicted critical flux matches that recorded by GBM! • Emission becomes softer during the dip in the lightcurve. SGR 1550-5418 formerly known as AXP 1E1547.0-5408 formerly known as an ASCA CCO in G327.0-0.13 Three episodes detected with GBM: Oct. 2008, Jan. & Mar. 2009 P = 2.069s . P = 2.318 x 10-11 s/s and B = 2.2 x 1014 G Near IR detection, Ks = 18.5±0.3 GBM triggered on 131 events from the source; many more in the data SGR 1550–5418 Bursting Activity Von Kienlin et al.
Recommended publications
  • Astronomy Astrophysics
    A&A 477, 193–202 (2008) Astronomy DOI: 10.1051/0004-6361:20066086 & c ESO 2007 Astrophysics Extended shells around B[e] stars Implications for B[e] star evolution A. P. Marston1 and B. McCollum2 1 ESA/ESAC, Villafranca del Castillo, 28080 Madrid, Spain e-mail: [email protected] 2 Spitzer Science Center, IPAC, Caltech, Pasadena, CA 91125, USA e-mail: [email protected] Received 21 July 2006 / Accepted 15 October 2007 ABSTRACT Aims. The position of B[e] stars in the upper left part of the Hertzsprung-Russell diagram creates a quandary. Are these stars young stars evolving onto the main sequence or old stars that are evolving off of it? Spectral characteristics suggest that B[e] stars can be placed into five subclasses and are not a homogeneous set. Such sub-classification is believed to coincide with varying origins and different evolutions. However, the evolutionary connection of B[e] stars – and notably sgB[e] – to other stars is unclear, particularly to evolved massive stars. We attempt to provide insight into the evolutionary past of B[e] stars. Methods. We performed an Hα narrow-band CCD imaging survey of B[e] stars, in the northern hemisphere. Prior to the current work, no emission-line survey of B[e] stars had yet been made, while only two B[e] stars appeared to have a shell nebula as seen in the Digital Sky Survey. Of nebulae around B[e] stars, only the ring nebula around MWC 137 has been previously observed extensively. Results. In this presentation we report the findings from our narrow-band optical imaging survey of the environments of 25 B[e] stars.
    [Show full text]
  • Observations of Gamma-Ray Binaries with VERITAS
    Observations of gamma-ray binaries with VERITAS PSR J1023+0038, HESS J0632+057 & LS I +61 303 Gernot Maier for the VERITAS Collaboration Alliance for Astroparticle Physics VERITAS > array of four 12 m Imaging Atmospheric Cherenkov Telescopes located in southern Arizona > energy range: 85 GeV to >30 TeV > field of view of 3.5 > angular resolution ~0.08 > point source sensitivity (5σ detection): 1% Crab in < 25 h (10% in 25 min) Gernot Maier Binary observations with VERITAS May 2015 The VERITAS Binary Program D GeV/TeV type of reference type orbital (kpc) period [d] detection observation (VERITAS) Be+neutron star? regular since 2006 ApJ 2008, 2009, LS I +61 303 1.6 26.5 ✔/✔ BH? (10-30 h/season) 2011, 2013 regular since 2006 HESS J0632+057 B0pe + ?? 1.5 315 ✘/✔ ApJ 2009, 2014 (10-30 h/season) 06.5V+neutron LS 5039 2.5 3.9 ✔/✔ (~10 h/season) - star? BH? Cygnus X-1 O9.7Iab + BH 2.2 5.6 (✘/✔) ToO (X-rays/LAT) - Cygnus X-3 Wolf Rayet + BH? 7 0.2 (✔)/✘ ToO (X-rays/LAT) ApJ 2013 ToO (triggered by 1A0535+262 Be/pulsar binary 2 111 ✘/✘ ApJ 733, 96 (2011) Swift XRT) Nova in a ToO (triggered by V407 Cygni 2.7 ✔/✘ ApJ 754, 77 (2012) symbiotic binary Fermi) Be/X-ray Binary Be-XRB - - - filler program - discover program BAT flaring hard SGRs+XRBs - - - ToO - X-ray objects Millisecond pulsar regular MSPB - - - - binaries (10-15 h/season) ToO Magnetars SGRs+AXPs - - - Proc of ICRC 2009 (GRB pipeline) Gernot Maier Binary observations with VERITAS May 2015 PSR J1023+0038: A new type of gamma-ray binary? PSR J1023+0038: 1.69 ms spin period, 4.8 hr orbital
    [Show full text]
  • Study of Eclipsing Binaries: Light Curves & O-C Diagrams Interpretation
    galaxies Review Study of Eclipsing Binaries: Light Curves & O-C Diagrams Interpretation Helen Rovithis-Livaniou Department of Astrophysics, Astronomy & Mechanics, Faculty of Physics, Panepistimiopolis, Zografos, Athens University, 15784 Athens, Greece; [email protected]; Tel.: +30-21-0984-7232 Received: 10 October 2020; Accepted: 6 November 2020; Published: 13 November 2020 Abstract: The continuous improvement in observational methods of eclipsing binaries, EBs, yield more accurate data, while the development of their light curves, that is magnitude versus time, analysis yield more precise results. Even so, and in spite the large number of EBs and the huge amount of observational data obtained mainly by space missions, the ways of getting the appropriate information for their physical parameters etc. is either from their light curves and/or from their period variations via the study of their (O-C) diagrams. The latter express the differences between the observed, O, and the calculated, C, times of minimum light. Thus, old and new light curves analysis methods of EBs to obtain their principal parameters will be considered, with examples mainly from our own observational material, and their subsequent light curves analysis using either old or new methods. Similarly, the orbital period changes of EBs via their (O-C) diagrams are referred to with emphasis on the use of continuous methods for their treatment in absence of sudden or abrupt events. Finally, a general discussion is given concerning these two topics as well as to a few related subjects. Keywords: eclipsing binaries; light curves analysis/synthesis; minima times and (O-C) diagrams 1. Introduction A lot of time has passed since the primitive observations of EBs made with naked eye till today’s space surveys.
    [Show full text]
  • Gaia Data Release 2 Special Issue
    A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D.
    [Show full text]
  • Mass of the White Dwarf in the Symbiotic Binary Star MWC 560
    Mass of the white dwarf in the symbiotic binary star MWC 560 Radoslev Zamanov1, Andreja Gomboc2, Georgi Latev1 1 Institute of Astronomy and NAO, Bulgarian Academy of Sciences, BG-1784 Sofia 2 Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana [email protected]; [email protected] (Research report. Accepted on 23.06.2011) Abstract. We report an estimate of the white dwarf parameters in the symbiotic binary star MWC 560. We calculate white dwarf mass to be MWD = 0.85 − 1.0 M⊙ and its radius to be RWD = 6900 − 5600 km. Our estimate is derived on the basis of the observed ejection velocities and suggested connection between jet and escape velocities. Key words: stars: binaries: close – binaries: symbiotic – stars: individual (MWC 560) Маса на бялото джудже в симбиотичната двойна звезда MWC 560 Радослав Заманов, Андрея Гомбоц, Георги Латев Ние докладваме една оценка на параметрите на бялото джудже в симбиотичната двойна звезда MWC 560. Изчислихме, че неговата маса е MWD = 085 − 1.0 M⊙ и радиусът му е RWD = 6900−5600 км. Оценката е направена на база на наблюдаваните скорости на изхвърляне на вещество и връзка между скоростта на джета и скоростта на освобождаване (втора космическа). 1 Introduction MWC 560 (V694 Monocerotis) was discovered as an object with bright hy- drogen lines (Merrill & Burwell 1943). It is a symbiotic binary system, which consists of a red giant and a white dwarf. The orbital period is estimated to be Porb = 1931 162 day (Gromadzki et al. 2007). Its optical spectrum shows prominent emission± lines of H I, He I, Fe II, Ti II superimposed on the absorption features of an M type giant (Chentsov et al.
    [Show full text]
  • The Symbiotic Stars 79
    6 The Symbiotic Stars ULISSE MUNARI 6.1 Symbiotic Stars: Binaries accreting from a Red Giant When Merrill and Humason (1932) discovered CI Cyg and AX Per, the first known sym- biotic stars (hereafter SySts), they were puzzled (in line with the wisdom of the time, not easily contemplating stellar binarity) by the co-existence in the ’same’ star of features be- longing to distant cornersof the HR diagram: the TiO bands typical of the coolest M giants, the HeII 4686 A˚ seen only in the hottest O-type stars, and an emission line spectrum match- ing that of planetary nebulae (hereafter PN). All these features stands out prominently in the spectrum of CI Cyg shown in Figure 6.1 together with its light-curve displaying a large assortment of different types of variability, with the spectral appearance changing in pace (a brighter state usually comes with bluer colors and a lower ionization). A great incentive to the study of SySts was provided in the 1980ies by the first confer- ence (Friedjung and Viotti, 1982) and monograph(Kenyon, 1986) devoted entirely to them, the first catalog and spectral atlas of known SySts by Allen (1984), and the first simple ge- ometrical modeling of their ionization front (Seaquist et al., 1984). Allen offered a clean classification criterium for SySts: a binary star, combining a red giant (RG) and a compan- ion hot enough to sustain HeII (or higher ionization) emission lines. The spectral atlas by Munari and Zwitter (2002), shows how the majorityof SySts meeting this criterium display in their spectra emission lines of at least the NeV, OVI or FeVII ionization stages, requiring a minimum photo-ionization temperature of 130,000 K (Murset and Nussbaumer, 1994).
    [Show full text]
  • Variable Star
    Variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) fluctuates. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes Trifid Nebula contains Cepheid variable stars eclipses it. Many, possibly most, stars have at least some variation in luminosity: the energy output of our Sun, for example, varies by about 0.1% over an 11-year solar cycle.[1] Contents Discovery Detecting variability Variable star observations Interpretation of observations Nomenclature Classification Intrinsic variable stars Pulsating variable stars Eruptive variable stars Cataclysmic or explosive variable stars Extrinsic variable stars Rotating variable stars Eclipsing binaries Planetary transits See also References External links Discovery An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol.[2][3][4] Of the modern astronomers, the first variable star was identified in 1638 when Johannes Holwarda noticed that Omicron Ceti (later named Mira) pulsated in a cycle taking 11 months; the star had previously been described as a nova by David Fabricius in 1596. This discovery, combined with supernovae observed in 1572 and 1604, proved that the starry sky was not eternally invariable as Aristotle and other ancient philosophers had taught.
    [Show full text]
  • The Evolution of Close Binaries
    The Evolution of Close Binaries Philipp Podsiadlowski (Oxford) The case of RS Ophiuchi • as a test of binary stellar evolution • as a potential Type Ia supernova (SN Ia) progenitor I. Testing Binary Evolution: the Case of sdB Stars II. Problems in Binary Evolution III. The Progenitors of SNe Ia III. The Origin of Symbiotic Binaries IV. The Status of RS Ophiuchi Testing Binary Evolution: sdB Stars (Han et al. 2002, 2003) • sdB stars are helium-core-burning stars (with M ' 0.5 M ) that have lost most of their envelopes by binary interactions • prototypical evolution for forming compact bina- ries . stable Roche-lobe overflow . common-envelope (CE) evolution . binary mergers • all channels appear to be important (∼> 50% are short-period, post-CE binaries; Maxted, Heber, Napiwotzki) • mass transfer must have started near the tip of the red-giant branch (helium burning!) → ideal systems to test/constrain binary evolution Common−Envelope Channels stable RLOF + CE (mass ratio < 1.2 − 1.5) CE only (mass ratio > 1.2 − 1.5) Stable RLOF Channel stable RLOF (mass ratio < 1.2 − 1.5) stable RLOF (near tip of RGB) wide binary He WD MS unstable RLOF −−−> dynamical mass transfer unstable RLOF −−−> dynamical mass transfer wide sdB binary with MS/SG companion common−envelope phase common−envelope phase He He He MS P = 10 − 500 days orb M = 0.30 − 0.49 M sdB sun short−period sdB binary with He WD companion short−period sdB binary with MS companion P = 0.1 − 10 days orb M = 0.4 − 0.49 M sdB sun Problems in Binary Evolution (Selection) Common-envelope evolution and The criterion for dynamical mass transfer ejection • dynamical mass transfer is caused by a • dynamical mass transfer leads to a mass-transfer runaway (giant expands, CE and spiral-in phase Roche lobe shrinks) = • if envelope is ejected → short-period .
    [Show full text]
  • A Star in the M31 Giant Stream: the Highest Negative Stellar Velocity
    Draft version November 3, 2018 A Preprint typeset using LTEX style emulateapj v. 08/22/09 A STAR IN THE M31 GIANT STREAM: THE HIGHEST NEGATIVE STELLAR VELOCITY KNOWN Nelson Caldwell Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA electronic mail: [email protected] Heather Morrison Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106-7215 electronic mail: [email protected] Scott J. Kenyon Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA electronic mail: [email protected] Ricardo Schiavon Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720, USA electronic mail: [email protected] Paul Harding Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106-7215 electronic mail: [email protected] James A. Rose Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA electronic mail: [email protected] Draft version November 3, 2018 ABSTRACT We report on a single star, B030D, observed as part of a large survey of objects in M31, which has the unusual radial velocity of −780 km s−1. Based on details of its spectrum, we find that the star is an F supergiant, with a circumstellar shell. The evolutionary status of the star could be one of a post-mainsequence close binary, a symbiotic nova, or less likely, a post-AGB star, which additional observations could help sort out. Membership of the star in the Andromeda Giant Stream can explain its highly negative velocity. Subject headings: Galaxies: individual (M31) – Galaxies: kinematics and dynamics – Stars: kinematics – Supergiants – circumstellar matter 1.
    [Show full text]
  • The Interaction of Type Ia Supernova with Their Circumstellar Medium A
    The Interaction of Type Ia Supernova with their Circumstellar Medium A. Chiotellis SUMMARY This thesis is focused on the study of a specific class of supernovae, named Type Ia (or thermonuclear) supernovae. In particular, we attempt to gain information about their origin through the study of the interaction of these supernovae with circumstellar structures that have been shaped by their progenitor systems. But before we start the description of the aim and the parts of this work, let’s take things from the beginning by clarifying what is a Type Ia supernova. Stars, like people, are used to live in pairs. A pair of two stars is called binary system. And as it is happening with the human relationships some binaries are boring and there is no interaction between the two components, some other interact influencingthe evolution of each member while, finally, in some other cases the interaction of the two members is explosive. In the last category belongs the class of supernovae named as Type Ia supernovae. In this case the explosive member of the binary is a white dwarf (the compact remnant of a low mass star) composed of carbon and oxygen. Through mass accretion from the companion star the white dwarf increases its mass whereas the density in the its center goes up to levels capable to ignite the carbon. As the nuclear fusion of carbon occurs under degenerate conditions (the pressure is independent of the temperature) the burning process is not regulated, leading to a runaway fusion which burns almost the entire white dwarf. The energy released from this thermonuclear burning disrupts the star creating a Type Ia supernova explosion.
    [Show full text]
  • Variable Star Section Circular 179 (Des Loughney, March 2019) Discussed the LY Aurigae System and Suggested Making Observations of It
    ` ISSN 2631-4843 The British Astronomical Association Variable Star Section Circular No. 180 June 2019 Office: Burlington House, Piccadilly, London W1J 0DU Contents From the Director 3 Spectroscopy training workshop – Andy Wilson 4 CV & E News – Gary Poyner 5 BAAVSS campaign to observe the old Nova HR Lyr – Jeremy Shears 6 Narrow Range Variables, made for digital observation – Geoff Chaplin 9 AB Aurigae – John Toone 10 The Symbiotic Star AG Draconis – David Boyd 13 V Bootis revisited – John Greaves 16 OJ287: Astronomers asking if Black Holes need wigs – Mark Kidger 19 The Variable Star Observations of Alphonso King – Alex Pratt 25 Eclipsing Binary News – Des Loughney 26 LY Aurigae – David Connor 29 Section Publications 31 Contributing to the VSSC 31 Section Officers 32 Cover Picture M88 and AL Com in outburst: Nick James Chelmsford, Essex UK 2019 Apr 29.896UT 90mm, f4.8 with ASI294 MC Exposure 20x120s 2 Back to contents From the Director Roger Pickard And so, with this issue I bid you farewell as Section Director, as advised in the previous Circular. However, as agreed with Jeremy and the other officers, I shall retain the title of Assistant Director, principally to help with charts and old data input. However, I shall still be happy to receive emails from members who I have corresponded with in the past, especially those I've helped under the Mentoring Scheme. SUMMER MIRAS But a note on data submission. Some of you have been sending your "current" observations to the Pulsating Stars M = Max, m = min. Secretary, Shaun Albrighton, but you should be sending them to the Section Secretary, Bob Dryden.
    [Show full text]
  • Monitoring the Variability of Newly-Discovered Symbiotic Stars
    Monitoring the Variability of Newly-discovered Symbiotic Stars C. Doughty1, C. Douglass1, C. Garcia-Vega1, J. Lutz1, T. Sheen1 1University of Washington, Seattle, WA 98195 Abstract. The IPHAS survey identified new symbiotic binary systems through obser- vation of their Hα emissions and color spectrum. However, the survey made no attempt to determine whether the targets varied with time. Seven of the identified systems were photometrically observed at Manashtash Ridge Observatory (MRO) during the summer of 2013 with the intent of discovering which targets will display variability in their light curves. 1. Introduction A symbiotic binary system (SS) consists of an interacting cool star (usually a red giant) and a white dwarf. Material being sloughed off of the cool star due to stellar winds or to gravitational attraction between the two stars can result in optical and x-ray outbursts, accretion disks, and jets. Some of these interacting binaries have outbursts at irregular inter- vals (usually months to years between). Typically these outbursts are about 1-3 magnitudes in the V band. Others will brighten by a magnitude or so over a period of months and stay bright for perhaps a year or two. A small sub-group called the recurrent symbiotic novae can brighten about 6 magnitudes in a few days and then fade over a month or two, repeating this behavior on timescales of decades. Other types of light variations seen in SS are pulsations of the cool stars and eclipses. Most symbiotic systems are stellar, but a few have interesting structures such as jets or bipolar nebulae. SS are also classified into S- and D-types (stellar and dusty), according to their infrared characteristics.
    [Show full text]