Management of Amphibians, Reptiles, and Small Mammals in North America

Total Page:16

File Type:pdf, Size:1020Kb

Management of Amphibians, Reptiles, and Small Mammals in North America Abstract.-Between 1977 and 198 1, the Bureau of Distribution and Habitat Land Manaaement conducted extensive surveys of Associations of Herpetofauna Arizona's h&petofauna in 16 different habitat types on approximately 8.5 million acres of public lands. This paper describes results of one of the most exten- in Arizona: Corn~arisonsI by sive surveys ever conducted on amphibian and rep- Habitat Type1 tile communities in North America. K. Bruce Jones2 With the passage of the Federal Land tats and are often good indicators of Policy and Management Act in 1976, habitat conditions (Jones 1981a). the Bureau of Land Management Therefore, in order to obtain infor- (BLM) was mandated to keep an in- mation on these animals, principally ventory of resources on public lands. for land-use planning, the BLM con- Information collected during inven- ducted extensive inventories of am- tories or surveys was then to be used phibians and reptiles by habitat type. to identify issues for land use plan- This inventory included a scheme ning and opportunities for land man- whereby associations between am- agement. The BLM made a decision phibians and reptiles and certain rni- to collect data on all major wildlife crohabitats could be determined. The groups and their habitats inventory, conducted between 1977 Early in the development of its in- and 1981, was one of the most com- ventory program, the BLM recog- prehensive surveys of herpetological nized a need to devise a strategy that communities ever conducted in would compare animal distributions North America (27,885 array-nights and abundance to habitats. This in 16 habitat types over a five-year strategy was important since the period). It also represents the first BLM manages wildlife habitats and large-scale effort to quantitatively not wildlife populations. compare herpetofaunas associated In 1977 the BLM initiated invento- with ecosystems. This paper reports ries of wildlife resources on public the results of these surveys, includ- lands. At that time, considerable in- ing species distributions and associa- formation was already available on tions with microhabita ts and habitat Figure 1 .-The study area. game species. However, data on types (plant communities). nongame species were mostly lack- ing. As a result, priority was given to those presented by Brown et al. collecting data on nongame species STUDY AREA (1979). For example, because of the and their habitats. scale of their map, Brown et al. (1979) Amphibians and reptiles are im- The study area consisted of approxi- failed to recognize several small, rel- portant members of the nongame mately 3,441,296 ha (8.5 million ict stands of chaparral woodland, fauna. They use a wide range of habi- acres) of public lands located in cen- although Brown (1978) had noted the tral, west-central, southwestern, and presence of chaparral woodland 'Paper presented at symposium, Man- northwestern Arizona (fig. 1). Sixteen vegetation at several small sites (see agemen t of Amphibians, Reptiles, and different habitat types were deline- Jones et al. 1985 for the importance of Small Mammals in North America. (Flag- staff, Arizona, July 1 9-2 ?, 1 988). a ted within this area, primarily from small woodland stands to certain 2K. Bruce Jones is a Research Ecologist an existing map of vegetation asso- herpetofauna). Therefore, the habitat with the Environmental Protection Agency, ciations (Brown et al. 1979). Field re- type map used to allocate samples in Environmental Monitoring Systems Labora- connaissance allowed more local as- this study drew upon the Brown tory, Las Vegas, Nevada 89193. sociations to be recognized within (1978) and Brown et al. (1979) maps, and results of field reconnaissance. of 18.3 1 (5 gal) plastic containers bur- mary of sampling effort in each habi- For detailed descriptions of these ied in the ground and connected by tat type). Arrays were placed so that habitat types see Jones (1981b) and 0.41 m (8 inches) high aluminum microhabitat variability within each Buse (1981). drift fence; one trap was located in habitat type was sampled. The num- the center with three evenly dis- ber of arrays used to sample habitat persed (120") peripheral traps 7.14 m types was par tially influenced by the SAMPLING METHODS (25 ft) from the center (Jones 1981a, size of habitats; generally, more ex- Jones 1986).This modified array tensive habitats received proportion- Amphibian and reptile distribution method was designed specifically for ally larger samples. However, certain and abundance by habitat type were sampling amphibians and reptiles in habitats (e.g., riparian) were known determined by on-the-ground Sam- desert habitats (see Jones 1986 for a to be great sources of diversity pling efforts between October, 1977, comparison of this procedure with within desert regions; therefore, pri- and July, 1981. Samples were ob- the original array trapping scheme ority was given to obtaining larger tained by three methods. The most designed by Christman and samples within these habitats. Once extensive sampling was accom- Campbell 1982). A total of 183 arrays placed into the ground, arrays were plished with a pit-fall trapping were used to sample 16 different continuously open for a minimum of method (array) consisting of a series habitat types (see table 1 for sum- 60 days. Some arrays (60) were open for 9 months. Generally, samples were taken during the spring, sum- mer, and fall. However, some arrays (17) were open only during spring months and others only in the fall (12). The opening of new arrays at different locations, and the closing of other arrays, were often dictated by BLM's predetermined resource plan- ning schedule. Since some amphibians and many snakes could not be effectively sampled by pit-fall traps, it was nec- essary to use two other field tech- niques. Road riding, consisting of traveling roads from dusk to ap- proximately 2300 h throughout de- lineated habitat types, was used to determine the occurrence of amphibi- ans and medium and large snakes (see table 1 for sampling effort within each habitat type). Time-constraint searches (Bury and Raphael 19831, consisting of walking along permanent and tem- porary water sources (natural and man-made) at night, were used to verify the presence of frogs and toads at waters within habitat types (see table 1 for sampling effort within each habitat type). Finally, to get an idea of the known distribution of amphibians and reptiles within the study area, I obtained records from 7 museums known for their outstanding collec- tions of amphibians and reptiles from the Southwest: the University of Michigan, Arizona State University, the total number of any species lar to arrays, only array data were the University of New Mexico, caught during a 24-hour period (ar- used to calculate species diversity. Northern Arizona University, the ray-night). Relative abundance was Two types of cluster analysis were University of Arizona, the Los Ange- determined for each species on array used to determine similarities among les County Museum, and the Univer- sites by taking the greatest number of habitat types. The first cluster analy- sity of California at Berkeley. In addi- individuals of a species trapped dur- sis was performed only on array tion, these data wcre used to com- ing a 30-day period and dividing by data, and it was based on euclidean pare the past distribution of amphibi- the number of days. This calculation distances (Pimental 1979). Calcula- ans and reptiles within the study was used because of monthly differ- tion of euclidean distances between area with that obtained during the ences in species' activity patterns. hahitats wcre based on a combina- BLM's inventories. The number of arrays in which a spe- tion of species' presence or absence Microhabitat data were collected cies was trapped in each habitat type on a site and similarity in species' on each array site and along roads by also was compiled to determine how dominance (relative abundance) be- a modified point-intercept method widespread a species was within in- tween habitats. Since medium and consisting of 100 sample points sepa- dividual habitat types. large snakes (> 0.5 m or 1.5 ft) are not rated by 8 m (26 ft) along a randomly A principdl components analysis readily caught in pit-ball traps, their determined compass line; on array (Pimental 1979) was performed to relative abundances could not be cal- sites, the center of the line crossed compress microhabitat data into a culated accurately. To compare the over the array. At each point, the fol- smaller, depictable subset. Mean fac- overall herpetofaunas of habitat lowing measurements were taken: (1) tor scores of compressed microhabi- types, a second cluster analysis was vertical distribution of vegetation be- tat data were computed for each performed. This procedure involved tween 0-0.6 m (0-2 ft), 0.6-1.7 m (2-6 habitat type and plotted on a 3 vector calculation of Simpson similarity co- ft), 1.7-6.0 m (6-20 ft), and > 6 m (20 (axis) graph. Similarly, mean factor efficients (Pimental 1979). These coef- ft) (each time vegetation occurred in scores of compressed microhabita t ficients were then submitted to a a height class above the point, a con- data were computed for each am- cluster analysis. Unlike the analysis tact or "hit" was recorded); (2) pene- phibian and reptile species (turtles of array data via euclidean distances, tration to the nearest cm into the soil were excluded because aquatic mi- the use of Simpson similarity coeffi- by a pointed metal rod (1 cm in di- crohabitats were not measured). cients in a cluster analysis did not ameter); (3) depth of leaf litter (if These scores were calculated for each consider relative dominance in calcu- present); (4) depth of other litter such species by averaging mean factor lating distances between habitats.
Recommended publications
  • Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico
    Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico Kansas Biological Survey Report #151 Kelly Kindscher, Randy Jennings, William Norris, and Roland Shook September 8, 2008 Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico Cover Photo: The Gila River in New Mexico. Photo by Kelly Kindscher, September 2006. Kelly Kindscher, Associate Scientist, Kansas Biological Survey, University of Kansas, 2101 Constant Avenue, Lawrence, KS 66047, Email: [email protected] Randy Jennings, Professor, Department of Natural Sciences, Western New Mexico University, PO Box 680, 1000 W. College Ave., Silver City, NM 88062, Email: [email protected] William Norris, Associate Professor, Department of Natural Sciences, Western New Mexico University, PO Box 680, 1000 W. College Ave., Silver City, NM 88062, Email: [email protected] Roland Shook, Emeritus Professor, Biology, Department of Natural Sciences, Western New Mexico University, PO Box 680, 1000 W. College Ave., Silver City, NM 88062, Email: [email protected] Citation: Kindscher, K., R. Jennings, W. Norris, and R. Shook. Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico. Open-File Report No. 151. Kansas Biological Survey, Lawrence, KS. ii + 42 pp. Abstract During 2006 and 2007 our research crews collected data on plants, vegetation, birds, reptiles, and amphibians at 49 sites along the Gila River in southwest New Mexico from upstream of the Gila Cliff Dwellings on the Middle and West Forks of the Gila to sites below the town of Red Rock, New Mexico.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Contributions of Intensively Managed Forests to the Sustainability of Wildlife Communities in the South
    CONTRIBUTIONS OF INTENSIVELY MANAGED FORESTS TO THE SUSTAINABILITY OF WILDLIFE COMMUNITIES IN THE SOUTH T. Bently Wigley1, William M. Baughman, Michael E. Dorcas, John A. Gerwin, J. Whitfield Gibbons, David C. Guynn, Jr., Richard A. Lancia, Yale A. Leiden, Michael S. Mitchell, Kevin R. Russell ABSTRACT Wildlife communities in the South are increasingly influenced by land use changes associated with human population growth and changes in forest management strategies on both public and private lands. Management of industry-owned landscapes typically results in a diverse mixture of habitat types and spatial arrangements that simultaneously offers opportunities to maintain forest cover, address concerns about fragmentation, and provide habitats for a variety of wildlife species. We report here on several recent studies of breeding bird and herpetofaunal communities in industry-managed landscapes in South Carolina. Study landscapes included the 8,100-ha GilesBay/Woodbury Tract, owned and managed by International Paper Company, and 62,363-ha of the Ashley and Edisto Districts, owned and managed by Westvaco Corporation. Breeding birds were sampled in both landscapes from 1995-1999 using point counts, mist netting, nest searching, and territory mapping. A broad survey of herpetofauna was conducted during 1996-1998 across the Giles Bay/Woodbury Tract using a variety of methods, including: searches of natural cover objects, time-constrained searches, drift fences with pitfall traps, coverboards, automated recording systems, minnow traps, and turtle traps. Herpetofaunal communities were sampled more intensively in both landscapes during 1997-1999 in isolated wetland and selected structural classes. The study landscapes supported approximately 70 bird and 72 herpetofaunal species, some of which are of conservation concern.
    [Show full text]
  • Iguanid and Varanid CAMP 1992.Pdf
    CONSERVATION ASSESSMENT AND MANAGEMENT PLAN FOR IGUANIDAE AND VARANIDAE WORKING DOCUMENT December 1994 Report from the workshop held 1-3 September 1992 Edited by Rick Hudson, Allison Alberts, Susie Ellis, Onnie Byers Compiled by the Workshop Participants A Collaborative Workshop AZA Lizard Taxon Advisory Group IUCN/SSC Conservation Breeding Specialist Group SPECIES SURVIVAL COMMISSION A Publication of the IUCN/SSC Conservation Breeding Specialist Group 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124 USA A contribution of the IUCN/SSC Conservation Breeding Specialist Group, and the AZA Lizard Taxon Advisory Group. Cover Photo: Provided by Steve Reichling Hudson, R. A. Alberts, S. Ellis, 0. Byers. 1994. Conservation Assessment and Management Plan for lguanidae and Varanidae. IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Banlc Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No. 1100 1210 1736. The work of the Conservation Breeding Specialist Group is made possible by generous contributions from the following members of the CBSG Institutional Conservation Council Conservators ($10,000 and above) Australasian Species Management Program Gladys Porter Zoo Arizona-Sonora Desert Museum Sponsors ($50-$249) Chicago Zoological
    [Show full text]
  • Final Copy 2019 10 01 Herrera
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.
    [Show full text]
  • Molecular Phylogenetics and Evolution 55 (2010) 153–167
    Molecular Phylogenetics and Evolution 55 (2010) 153–167 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Conservation phylogenetics of helodermatid lizards using multiple molecular markers and a supertree approach Michael E. Douglas a,*, Marlis R. Douglas a, Gordon W. Schuett b, Daniel D. Beck c, Brian K. Sullivan d a Illinois Natural History Survey, Institute for Natural Resource Sustainability, University of Illinois, Champaign, IL 61820, USA b Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303-3088, USA c Department of Biological Sciences, Central Washington University, Ellensburg, WA 98926, USA d Division of Mathematics & Natural Sciences, Arizona State University, Phoenix, AZ 85069, USA article info abstract Article history: We analyzed both mitochondrial (MT-) and nuclear (N) DNAs in a conservation phylogenetic framework to Received 30 June 2009 examine deep and shallow histories of the Beaded Lizard (Heloderma horridum) and Gila Monster (H. Revised 6 December 2009 suspectum) throughout their geographic ranges in North and Central America. Both MTDNA and intron Accepted 7 December 2009 markers clearly partitioned each species. One intron and MTDNA further subdivided H. horridum into its Available online 16 December 2009 four recognized subspecies (H. n. alvarezi, charlesbogerti, exasperatum, and horridum). However, the two subspecies of H. suspectum (H. s. suspectum and H. s. cinctum) were undefined. A supertree approach sus- Keywords: tained these relationships. Overall, the Helodermatidae is reaffirmed as an ancient and conserved group. Anguimorpha Its most recent common ancestor (MRCA) was Lower Eocene [35.4 million years ago (mya)], with a 25 ATPase Enolase my period of stasis before the MRCA of H.
    [Show full text]
  • Class Reptilia
    REPTILE CWCS SPECIES (27 SPECIES) Common name Scientific name Alligator Snapping Turtle Macrochelys temminckii Broad-banded Water Snake Nerodia fasciata confluens Coal Skink Eumeces anthracinus Copperbelly Watersnake Nerodia erythrogaster neglecta Corn Snake Elaphe guttata guttata Diamondback Water Snake Nerodia rhombifer rhombifer Eastern Coachwhip Masticophis flagellum flagellum Eastern Mud Turtle Kinosternon subrubrum Eastern Ribbon Snake Thamnophis sauritus sauritus Eastern Slender Glass Lizard Ophisaurus attenuatus longicaudus False Map Turtle Graptemys pseudogeographica pseudogeographica Green Water Snake Nerodia cyclopion Kirtland's Snake Clonophis kirtlandii Midland Smooth Softshell Apalone mutica mutica Mississippi Map Turtle Graptemys pseudogeographica kohnii Northern Pine Snake Pituophis melanoleucus melanoleucus Northern Scarlet Snake Cemophora coccinea copei Scarlet Kingsnake Lampropeltis triangulum elapsoides Six-lined Racerunner Cnemidophorus sexlineatus Southeastern Crowned Snake Tantilla coronata Southeastern Five-lined Skink Eumeces inexpectatus Southern Painted Turtle Chrysemys picta dorsalis Timber Rattlesnake Crotalus horridus Western Cottonmouth Agkistrodon piscivorus leucostoma Western Mud Snake Farancia abacura reinwardtii Western Pygmy Rattlesnake Sistrurus miliarius streckeri Western Ribbon Snake Thamnophis proximus proximus CLASS REPTILIA Alligator Snapping Turtle Macrochelys temminckii Federal Heritage GRank SRank GRank SRank Status Status (Simplified) (Simplified) N T G3G4 S2 G3 S2 G-Trend Decreasing G-Trend
    [Show full text]
  • Watchable Wildlife Form
    U.S. Fish & Wildlife Service Watchable Wildlife Bitter Lake National Wildlife Refuge Welcome Roundnose minnow Dionda episcopa Amphibians Bitter Lake National Wildlife Refuge is one Speckled chub Extrarius aestivalis Family Ambystomatidae – Mole Salamanders of New Mexico’s most important sanctuaries Plains minnow Hybognathus placitus Tiger salamander Ambystoma tigrinum Arkansas River shiner Notropis girardi and breeding grounds for migratory birds and Family Leptodactylidae – Tropical Frogs Rio Grande shiner Notropis jemezanus other wildlife. Established in 1937, the 24,500- Eastern barking frog Eleutherodactylus augusti Pecos bluntnose shiner Notropis simus pecosensis acre refuge is strategically located along the latrans Pecos River where the Chihuahuan Desert Fathead minnow Pimephales promelas Family Pelobatidae – Spadefoot Toads meets the Great Plains. The convergence of Family Catostomidae – Suckers Couch’s spadefoot toad Scaphiopus couchii these vastly different terrains has produced a River carpsucker Carpoides carpio diverse range of habitats, providing a home to New Mexico spadefoot toad Spea multiplicata a rich array of plant and animal life, including Family Ictaluridae – Catfishes Plains spadefoot toad Spea bombifrons Channel catfish Ictalurus punctatus a number of rare species. Family Bufonidae – Toads Bitter Lake NWR is best known for its Family Cyprinodontidae – Pupfish Woodhouse’s toad Bufo woodhousii spectacular variety of birds, particularly the Pecos pupfish Cyprinodon pecosensis Red-spotted toad Bufo punctatus Great Plains toad Bufo cognatus large migrations of ducks, geese, and cranes Family Fundulidae – Killifishes Texas toad Bufo speciosus during the fall and winter months. Many of Plains killifish Fundulus zebrinus Western green toad Bufo debilis insidior these creatures are drawn by the refuge’s Rainwater killifish Lucania parva wetlands, which offer an abundance of food as Family Hylidae – Treefrogs Family Poeciliidae – Livebearers well as ideal nesting habitat for some species.
    [Show full text]
  • Curve-Billed Thrasher Reproductive Success After a Wet Winter in the Sonoran Desert of Arizona
    NOTES CURVE-BILLED THRASHER REPRODUCTIVE SUCCESS AFTER A WET WINTER IN THE SONORAN DESERT OF ARIZONA CARROLL D. LITTLEFIELD, The Bioresearch Ranch, P. O. Box 117, Rodeo, New Mexico 88056 Studies of avian reproductive success provide important clues about the relationship between a species’ populations and its habitats. Although many species are hard to study because their nests are diffi cult to locate and assess, the Curve-billed Thrasher (Toxostoma curvirostre) is an ideal subject. Its open-cup stick nests are easy to fi nd and often at a height convenient for observing nest contents. For the subspecies in southeastern Arizona (T. c. palmeri), the breeding season can begin in late Janu- ary, but generally nesting does not increase sharply until late March, with a distinct peak from mid-April through mid-May (Corman 2005), The initiation of breeding, however, seems (in part) correlated with the amount of winter precipitation. Two or more wet months in succession lead to food resources suffi cient to elicit early nesting (Smith 1971), but earlier clutches may be smaller than those laid later, as early in the season food supplies may be limited (Stahlecker 2003). As food supplies increase, clutch sizes increase (Smith 1971). On the other hand, the success rate of earlier nests may be greater, as important predators of eggs and nestlings, such as snakes, are less active early in the season (Tweit 1996). To assess the Curve-billed Thrasher’s nesting chronology and reproductive success after a period of abundant autumn–winter rainfall, I began a study of its nesting near Tucson, Pima County, Arizona, in late January 1979.
    [Show full text]
  • Amphibians and Reptiles of the State of Coahuila, Mexico, with Comparison with Adjoining States
    A peer-reviewed open-access journal ZooKeys 593: 117–137Amphibians (2016) and reptiles of the state of Coahuila, Mexico, with comparison... 117 doi: 10.3897/zookeys.593.8484 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining states Julio A. Lemos-Espinal1, Geoffrey R. Smith2 1 Laboratorio de Ecología-UBIPRO, FES Iztacala UNAM. Avenida los Barrios 1, Los Reyes Iztacala, Tlalnepantla, edo. de México, Mexico – 54090 2 Department of Biology, Denison University, Granville, OH, USA 43023 Corresponding author: Julio A. Lemos-Espinal ([email protected]) Academic editor: A. Herrel | Received 15 March 2016 | Accepted 25 April 2016 | Published 26 May 2016 http://zoobank.org/F70B9F37-0742-486F-9B87-F9E64F993E1E Citation: Lemos-Espinal JA, Smith GR (2016) Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining statese. ZooKeys 593: 117–137. doi: 10.3897/zookeys.593.8484 Abstract We compiled a checklist of the amphibians and reptiles of the state of Coahuila, Mexico. The list com- prises 133 species (24 amphibians, 109 reptiles), representing 27 families (9 amphibians, 18 reptiles) and 65 genera (16 amphibians, 49 reptiles). Coahuila has a high richness of lizards in the genus Sceloporus. Coahuila has relatively few state endemics, but has several regional endemics. Overlap in the herpetofauna of Coahuila and bordering states is fairly extensive. Of the 132 species of native amphibians and reptiles, eight are listed as Vulnerable, six as Near Threatened, and six as Endangered in the IUCN Red List. In the SEMARNAT listing, 19 species are Subject to Special Protection, 26 are Threatened, and three are in Danger of Extinction.
    [Show full text]
  • Venomous Nonvenomous Snakes of Florida
    Venomous and nonvenomous Snakes of Florida PHOTOGRAPHS BY KEVIN ENGE Top to bottom: Black swamp snake; Eastern garter snake; Eastern mud snake; Eastern kingsnake Florida is home to more snakes than any other state in the Southeast – 44 native species and three nonnative species. Since only six species are venomous, and two of those reside only in the northern part of the state, any snake you encounter will most likely be nonvenomous. Florida Fish and Wildlife Conservation Commission MyFWC.com Florida has an abundance of wildlife, Snakes flick their forked tongues to “taste” their surroundings. The tongue of this yellow rat snake including a wide variety of reptiles. takes particles from the air into the Jacobson’s This state has more snakes than organs in the roof of its mouth for identification. any other state in the Southeast – 44 native species and three nonnative species. They are found in every Fhabitat from coastal mangroves and salt marshes to freshwater wetlands and dry uplands. Some species even thrive in residential areas. Anyone in Florida might see a snake wherever they live or travel. Many people are frightened of or repulsed by snakes because of super- stition or folklore. In reality, snakes play an interesting and vital role K in Florida’s complex ecology. Many ENNETH L. species help reduce the populations of rodents and other pests. K Since only six of Florida’s resident RYSKO snake species are venomous and two of them reside only in the northern and reflective and are frequently iri- part of the state, any snake you en- descent.
    [Show full text]
  • Acrodont Iguanians (Squamata) from the Middle Eocene of the Huadian Basin of Jilin Province, China, with a Critique of the Taxon “Tinosaurus冶
    第 卷 第 期 古 脊 椎 动 物 学 报 49 摇 1 pp.69-84 年 月 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 2011 1 VERTEBRATA PALASIATICA 摇 figs.1-5 吉林桦甸盆地中始新世端生齿鬣蜥类 ( 有鳞目) 化石及对响蜥属的评述 1 1 孙 巍2 李春田2 Krister T德. 国S森M肯贝IT格H研究摇所和S自te然p历h史an博物F馆. 古K人. 类S学C与H麦A塞A尔L研究摇 部 法摇兰克福 摇 (1 摇 摇 60325) 吉林大学古生物学与地层学研究中心 长春 (2 摇 摇 130026) 摘要 中国吉林省中始新世桦甸组的两种端生齿鬣蜥类化石突显出端生齿类 在第 : (Acrodonta) 三纪早期的分化 第一种化石的特征为具有多个 个 前侧生齿位及单尖且侧扁的颊齿 。 (6 ) 。 其牙齿与牙齿缺失附尖的主要端生齿类 如鬣蜥亚科 的海蜥属 Hydrosaurus 无特别 ( Agaminae ) 相似之处 其亲缘关系也并不清楚 第二种的牙齿与很多现生有三尖齿的鬣蜥类 即蜡皮蜥 , 。 ( 属 Leiolepis 和飞蜥亚科 以及化石响蜥属的许多种相似 一个骨骼特征显示其可能 Draconinae) ; 与包括鬣蜥亚科 海蜥属 飞蜥亚科和须鬣蜥亚科 的支系有关 但尚需更多 、 、 (Amphibolurinae) , 更完整的标本以做结论 与现生鬣蜥类的比较研究表明 与响蜥属牙齿相似的三尖型齿很可 。 , 能是蜡皮蜥属及飞蜥亚科中大约 个现生种的典型特征 相对于这些支系 响蜥属的鉴定 200 。 , 特征并不充分 由于端生齿类的分化被认为始于新生代早期 因而东亚的化石材料很可能有 。 , 助于阐明这一支系的演化历史 尤其是结合分子遗传学的研究方法 然而仅基于破碎颌骨材 , 。 料的新分类单元名称的成倍增加并不能使我们更接近这一目标 尽力采集标本并研究可对比 , 的现生骨骼材料应是第一位的 。 关键词 中国吉林 始新世 桦甸组 端生齿类 鬣蜥科 响蜥属 衍征 : ; ; ; ; ; ; 中图法分类号 文献标识码 文章编号 :Q915. 864摇 :A摇 :1000-3118(2011)01-0069-16 ACRODONT IGUANIANS (SQUAMATA) FROM THE MIDDLE EOCENE OF THE HUADIAN BASIN OF JILIN PROVINCE, CHINA, WITH A CRITIQUE OF THE TAXON “TINOSAURUS冶 1 1 2 2 DepartmKenrtisoftePralTae.oaSnMthrIoTpHolog摇y aSntdepMheassnel FRe.seKa.rcShCSHenAckAenLber摇g RSeUseaNrchWInesitit摇uteLaIndCNhuatnu鄄raTliaHnistory Museum (1 , 摇 Senckenberganlage 25, 60325 Frankfurt am Main, Germany摇 krister. smith@ senckenberg. de) Research Center for Paleontology and Stratigraphy Jilin University (2 , Changchun 130026, China) Abstract 摇 Two acrodont iguanians from the middle Eocene Huadian Formation, Jilin Province, China, highlight the diversity of Acrodonta early in the Tertiary. The first is characterized by a high number (six) of anterior pleurodont tooth loci and by unicuspid, labiolingually compressed cheek teeth. These teeth, however, show noHsypdercoisaalusriumsilarity to those of major acrodontan clades in which the accessory cusps are absent (e.
    [Show full text]