SEMIPARAMETRIC ESTIMATION OF DYNAMIC DISCRETE CHOICE MODELS NICHOLAS BUCHHOLZ?, MATTHEW SHUMy, AND HAIQING XUz ABSTRACT. We consider the estimation of dynamic binary choice models in a semiparametric setting, in which the per-period utility functions are known up to a finite number of parameters, but the distribution of utility shocks is left unspecified. This semiparametric setup differs from most of the existing identification and estimation literature for dynamic discrete choice models. To show identification we derive and exploit a new recursive representation for the unknown quantile function of the utility shocks. Our estimators are straightforward to compute, and resem- ble classic closed-form estimators from the literature on semiparametric regression and average derivative estimation. Monte Carlo simulations demonstrate that our estimator performs well in small samples. Keywords: Semiparametric estimation, Dynamic discrete choice model, Average derivative esti- mation, Fredholm integral operators JEL: C14, D91, C41, L91 Date: Thursday 26th September, 2019. ∗We thank Hassan Afrouzi, Saroj Bhattarai, Stephane Bonhomme, Denis Chetverikov, Kirill Pogorelskiy, Eduardo Souza-Rodrigues, Tang Srisuma, and seminar participants at Academia Sinica, Arizona, Carnegie-Mellon, Chicago, Colorado (Boulder), Duke, Einaudi Institute, Irvine, Washington (Seattle), UT Austin, Wisconsin, Yale, and Texas Metrics Camp for helpful discussions. ?Department of Economics, Princeton University,
[email protected]. yDivision of Humanities and Social Sciences, California Institute of Technology,
[email protected]. zDepartment of Economics, University of Texas at Austin,
[email protected]. 1 1. INTRODUCTION The dynamic discrete choice (DDC) framework, pioneered by Wolpin (1984), Pakes (1986), Rust (1987, 1994), has gradually become the workhorse model for modelling dynamic decision processes in structural econometrics.