SYMPHONY 5.6.9 User's Manual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IBM Platform Symphony V5.2 Enables Scalable, High- Performance Grid Services for a Variety of Parallel Compute and Data Intensive Applications
IBM United States Software Announcement 212-204, dated June 4, 2012 IBM Platform Symphony V5.2 enables scalable, high- performance grid services for a variety of parallel compute and data intensive applications Table of contents 1 Overview 7 Publications 2 Key prerequisites 8 Technical information 2 Planned availability date 13 Ordering information 2 Description 16 Terms and conditions 4 Product positioning 19 Prices 6 Program number 20 Order now At a glance IBM® Platform SymphonyTM V5.2 helps you exceed your performance goals with a fast, efficient grid computing environment. You can realize: • Faster throughput and performance • Higher levels of resource utilization • Reduced infrastructure and management costs • Reduced application development and maintenance costs • The agility to respond instantly to real-time demands For ordering, contact Your IBM representative or an IBM Business Partner. For more information contact the Americas Call Centers at 800-IBM-CALL (426-2255). Reference: YE001 Overview IBM Platform Symphony V5.2 is an enterprise-class grid manager for running distributed application services on a scalable, shared, heterogeneous grid. It accelerates a wide variety of compute and data-intensive applications, quickly computing results while making optimal use of available infrastructure. Platform Symphony's efficient low-latency middleware and scheduling architecture is designed to provide the performance and agility required to predictably meet and exceed throughput goals for the most demanding analytic workloads. Designed -
How to Use Your Favorite MIP Solver: Modeling, Solving, Cannibalizing
How to use your favorite MIP Solver: modeling, solving, cannibalizing Andrea Lodi University of Bologna, Italy [email protected] January-February, 2012 @ Universit¨atWien A. Lodi, How to use your favorite MIP Solver Setting • We consider a general Mixed Integer Program in the form: T maxfc x : Ax ≤ b; x ≥ 0; xj 2 Z; 8j 2 Ig (1) where matrix A does not have a special structure. A. Lodi, How to use your favorite MIP Solver 1 Setting • We consider a general Mixed Integer Program in the form: T maxfc x : Ax ≤ b; x ≥ 0; xj 2 Z; 8j 2 Ig (1) where matrix A does not have a special structure. • Thus, the problem is solved through branch-and-bound and the bounds are computed by iteratively solving the LP relaxations through a general-purpose LP solver. A. Lodi, How to use your favorite MIP Solver 1 Setting • We consider a general Mixed Integer Program in the form: T maxfc x : Ax ≤ b; x ≥ 0; xj 2 Z; 8j 2 Ig (1) where matrix A does not have a special structure. • Thus, the problem is solved through branch-and-bound and the bounds are computed by iteratively solving the LP relaxations through a general-purpose LP solver. • The course basically covers the MIP but we will try to discuss when possible how crucial is the LP component (the engine), and how much the whole framework is built on top the capability of effectively solving LPs. • Roughly speaking, using the LP computation as a tool, MIP solvers integrate the branch-and-bound and the cutting plane algorithms through variations of the general branch-and-cut scheme [Padberg & Rinaldi 1987] developed in the context of the Traveling Salesman Problem (TSP). -
A Lifted Linear Programming Branch-And-Bound Algorithm for Mixed Integer Conic Quadratic Programs Juan Pablo Vielma, Shabbir Ahmed, George L
A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs Juan Pablo Vielma, Shabbir Ahmed, George L. Nemhauser, H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive NW, Atlanta, GA 30332-0205, USA, {[email protected], [email protected], [email protected]} This paper develops a linear programming based branch-and-bound algorithm for mixed in- teger conic quadratic programs. The algorithm is based on a higher dimensional or lifted polyhedral relaxation of conic quadratic constraints introduced by Ben-Tal and Nemirovski. The algorithm is different from other linear programming based branch-and-bound algo- rithms for mixed integer nonlinear programs in that, it is not based on cuts from gradient inequalities and it sometimes branches on integer feasible solutions. The algorithm is tested on a series of portfolio optimization problems. It is shown that it significantly outperforms commercial and open source solvers based on both linear and nonlinear relaxations. Key words: nonlinear integer programming; branch and bound; portfolio optimization History: February 2007. 1. Introduction This paper deals with the development of an algorithm for the class of mixed integer non- linear programming (MINLP) problems known as mixed integer conic quadratic program- ming problems. This class of problems arises from adding integrality requirements to conic quadratic programming problems (Lobo et al., 1998), and is used to model several applica- tions from engineering and finance. Conic quadratic programming problems are also known as second order cone programming problems, and together with semidefinite and linear pro- gramming (LP) problems are special cases of the more general conic programming problems (Ben-Tal and Nemirovski, 2001a). -
Linear Programming
Lecture 18 Linear Programming 18.1 Overview In this lecture we describe a very general problem called linear programming that can be used to express a wide variety of different kinds of problems. We can use algorithms for linear program- ming to solve the max-flow problem, solve the min-cost max-flow problem, find minimax-optimal strategies in games, and many other things. We will primarily discuss the setting and how to code up various problems as linear programs At the end, we will briefly describe some of the algorithms for solving linear programming problems. Specific topics include: • The definition of linear programming and simple examples. • Using linear programming to solve max flow and min-cost max flow. • Using linear programming to solve for minimax-optimal strategies in games. • Algorithms for linear programming. 18.2 Introduction In the last two lectures we looked at: — Bipartite matching: given a bipartite graph, find the largest set of edges with no endpoints in common. — Network flow (more general than bipartite matching). — Min-Cost Max-flow (even more general than plain max flow). Today, we’ll look at something even more general that we can solve algorithmically: linear pro- gramming. (Except we won’t necessarily be able to get integer solutions, even when the specifi- cation of the problem is integral). Linear Programming is important because it is so expressive: many, many problems can be coded up as linear programs (LPs). This especially includes problems of allocating resources and business 95 18.3. DEFINITION OF LINEAR PROGRAMMING 96 supply-chain applications. In business schools and Operations Research departments there are entire courses devoted to linear programming. -
Integer Linear Programs
20 ________________________________________________________________________________________________ Integer Linear Programs Many linear programming problems require certain variables to have whole number, or integer, values. Such a requirement arises naturally when the variables represent enti- ties like packages or people that can not be fractionally divided — at least, not in a mean- ingful way for the situation being modeled. Integer variables also play a role in formulat- ing equation systems that model logical conditions, as we will show later in this chapter. In some situations, the optimization techniques described in previous chapters are suf- ficient to find an integer solution. An integer optimal solution is guaranteed for certain network linear programs, as explained in Section 15.5. Even where there is no guarantee, a linear programming solver may happen to find an integer optimal solution for the par- ticular instances of a model in which you are interested. This happened in the solution of the multicommodity transportation model (Figure 4-1) for the particular data that we specified (Figure 4-2). Even if you do not obtain an integer solution from the solver, chances are good that you’ll get a solution in which most of the variables lie at integer values. Specifically, many solvers are able to return an ‘‘extreme’’ solution in which the number of variables not lying at their bounds is at most the number of constraints. If the bounds are integral, all of the variables at their bounds will have integer values; and if the rest of the data is integral, many of the remaining variables may turn out to be integers, too. -
Nonlinear Integer Programming ∗
Nonlinear Integer Programming ∗ Raymond Hemmecke, Matthias Koppe,¨ Jon Lee and Robert Weismantel Abstract. Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Nu- merous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considera- tions and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research. Raymond Hemmecke Otto-von-Guericke-Universitat¨ Magdeburg, FMA/IMO, Universitatsplatz¨ 2, 39106 Magdeburg, Germany, e-mail: [email protected] Matthias Koppe¨ University of California, Davis, Dept. of Mathematics, One Shields Avenue, Davis, CA, 95616, USA, e-mail: [email protected] Jon Lee IBM T.J. -
Functional Description of MINTO, a Mixed Integer Optimizer
Functional description of MINTO, a mixed integer optimizer Citation for published version (APA): Savelsbergh, M. W. P., Sigismondi, G. C., & Nemhauser, G. L. (1991). Functional description of MINTO, a mixed integer optimizer. (1st version ed.) (Memorandum COSOR; Vol. 9117). Technische Universiteit Eindhoven. Document status and date: Published: 01/01/1991 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. -
A Tutorial on Linear and Bilinear Matrix Inequalities
Journal of Process Control 10 (2000) 363±385 www.elsevier.com/locate/jprocont Review A tutorial on linear and bilinear matrix inequalities Jeremy G. VanAntwerp, Richard D. Braatz* Large Scale Systems Research Laboratory, Department of Chemical Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Box C-3, Urbana, Illinois 61801-3792, USA Abstract This is a tutorial on the mathematical theory and process control applications of linear matrix inequalities (LMIs) and bilinear matrix inequalities (BMIs). Many convex inequalities common in process control applications are shown to be LMIs. Proofs are included to familiarize the reader with the mathematics of LMIs and BMIs. LMIs and BMIs are applied to several important process control applications including control structure selection, robust controller analysis and design, and optimal design of experiments. Software for solving LMI and BMI problems is reviewed. # 2000 Published by Elsevier Science Ltd. All rights reserved. 1. Introduction One of the main reasons for this is that process control engineers are generally unfamiliar with the mathematics A linear matrix inequality (LMI) is a convex con- of LMI/BMIs, and there is no introductory text avail- straint. Consequently, optimization problems with con- able to aid the control engineer in learning these vex objective functions and LMI constraints are mathematics. As of the writing of this paper, the only solvable relatively eciently with o-the-shelf software. text that covers LMIs in any depth is the research The form of an LMI is very general. Linear inequalities, monograph of Boyd and co-workers [22]. Although this convex quadratic inequalities, matrix norm inequalities, monograph is a useful roadmap for locating LMI and various constraints from control theory such as results scattered throughout the electrical engineering Lyapunov and Riccati inequalities can all be written as literature, it is not a textbook for teaching the concepts LMIs. -
Neos & Htcondor: Optimizing Your World
Optimizing Your neos & World neos: Network-Enabled Optimization System Mathematical Formulation Maximize ∑j∈Vbjyj−α∗∑(i,j)∈Adijxij Subject to exiting node on tour ∑(i,j)∈Axij−yi=0,∀i∈V Subject to entering node on tour ∑(i,j)∈Axij−yi=0,∀j∈V AMPL Model set V; set LINKS := {i in V, j in V: i <> j}; param alpha >= 0; param d{LINKS} >= 0; param b{V} >= 0; #default benefit of visiting a bar neos param c{V} >= 0; # default cost of one drink param B default 30; # default maximum budget for drinks http://www.neos-guide.org/content/bar-crawl-optimization neos & HTCondor neos Workflow Optimization Job Solver Categories bco lp sdp neos co milp sio Results cp minco slp go miocp socp Browser Web kestrel nco uco lno ndo Solver Names AlphaECP csdp LOQO PGAPack ASA ddsip LRAMBO proxy BARON DICOPT MILES PSwarm BDMLP Domino MINLP QSopt_EX Email Email BiqMac DSDP MINOS RELAX4 BLMVM feaspump MINTO SBB Solver Pool bnbs FilMINT MOSEK scip at UW-Madison Bonmin filter MUSCOD-II SD bpmpd filterMPEC NLPEC SDPA Cbc Gurobi NMTR SDPLR Clp icos nsips SDPT3 concorde Ipopt OOQP SeDuMi Custom CONDOR KNITRO PATH SNOPT CONOPT LANCELOT PATHNLP SYMPHONY Couenne L-BFGS-B PENBMI TRON XMLRPC CPLEX LINDOGlobal PENSDP XpressMP Off-Site Solvers Argonne National Lab Solver Inputs Arizona State University AMPL jpg OSIL SPARSE Kestrel C LP RELAX4 SPARSE_SDPA (AMPL or GAMS) University of Klagenfurt CPLEX MATLAB_BINARY SDPA TSP University of Minho Fortran MOSEL SDPLR ZIMPL GAMS MPS SMPS Jobs Per Month 140000 120000 100000 80000 Minho 60000 Klagenfurt Arizona State 40000 Argonne 20000 -
Chapter 11: Basic Linear Programming Concepts
CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS Linear programming is a mathematical technique for finding optimal solutions to problems that can be expressed using linear equations and inequalities. If a real-world problem can be represented accurately by the mathematical equations of a linear program, the method will find the best solution to the problem. Of course, few complex real-world problems can be expressed perfectly in terms of a set of linear functions. Nevertheless, linear programs can provide reasonably realistic representations of many real-world problems — especially if a little creativity is applied in the mathematical formulation of the problem. The subject of modeling was briefly discussed in the context of regulation. The regulation problems you learned to solve were very simple mathematical representations of reality. This chapter continues this trek down the modeling path. As we progress, the models will become more mathematical — and more complex. The real world is always more complex than a model. Thus, as we try to represent the real world more accurately, the models we build will inevitably become more complex. You should remember the maxim discussed earlier that a model should only be as complex as is necessary in order to represent the real world problem reasonably well. Therefore, the added complexity introduced by using linear programming should be accompanied by some significant gains in our ability to represent the problem and, hence, in the quality of the solutions that can be obtained. You should ask yourself, as you learn more about linear programming, what the benefits of the technique are and whether they outweigh the additional costs. -
Domain Reduction Techniques for Global NLP and MINLP Optimization 2
Domain reduction techniques for global NLP and MINLP optimization Y. Puranik1 and Nikolaos V. Sahinidis1 1Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA Abstract Optimization solvers routinely utilize presolve techniques, including model simplification, reformulation and domain reduction techniques. Domain reduction techniques are especially important in speeding up convergence to the global optimum for challenging nonconvex nonlinear programming (NLP) and mixed- integer nonlinear programming (MINLP) optimization problems. In this work, we survey the various techniques used for domain reduction of NLP and MINLP optimization problems. We also present a computational analysis of the impact of these techniques on the performance of various widely available global solvers on a collection of 1740 test problems. Keywords: Constraint propagation; feasibility-based bounds tightening; optimality-based bounds tightening; domain reduction 1 Introduction combinatorial complexity introduced by the integer variables, nonconvexities in objective function or We consider the following mixed-integer nonlinear the feasible region lead to multiple local minima programming problem (MINLP): and provide a challenge to the optimization of such problems. min f(~x) Branch-and-bound [138] based methods can be s.t. g(~~x) ≤ 0 exploited to solve Problem 1 to global optimal- (1) ~xl ≤ ~x ≤ ~xu ity. Inspired by branch-and-bound for discrete Rn−m Zm ~x ∈ × programming problems [109], branch-and-bound was arXiv:1706.08601v1 [cs.DS] 26 Jun 2017 adapted for continuous problems by Falk and MINLP is a very general representation for opti- Soland [58]. The algorithm proceeds by bounding mization problems and includes linear programming the global optimum by a valid lower and upper (LP), mixed-integer linear programming (MIP) and bound throughout the search process. -
EGO Reference
EGO Reference Platform EGO Version 1.2.3 January 2008 Copyright © 1994-2007 Platform Computing Corporation All rights reserved. Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”) does not warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions or changes to the information in this document. UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM. We'd like to hear You can help us make this document better by telling us what you think of the content, organization, and usefulness of the information. from you If you find an error, or just want to make a suggestion for improving this document, please address your comments to [email protected]. Your comments should pertain only to Platform documentation. For product support, contact [email protected]. Document This document is protected by copyright and you may not redistribute or translate it into another language, in part or in whole. redistribution and translation Internal You may only redistribute this document internally within your organization (for example, on an intranet) provided that you continue redistribution to check the Platform Web site for updates and update your version of the documentation.