Escherichia Coli
CEACAMs serve as toxin-stimulated receptors for enterotoxigenic Escherichia coli Alaullah Sheikha, Brunda Tumalaa, Tim J. Vickersa, David Alvaradob, Matthew A. Ciorbab, Taufiqur Rahman Bhuiyanc, Firdausi Qadric, Bernhard B. Singerd, and James M. Fleckensteina,e,f,1 aDepartment of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110; bDepartment of Medicine, Division of Gastroenterology, Washington University School of Medicine, Saint Louis, MO 63110; cInternational Centre for Diarrhoeal Disease Research, Bangladesh (ICDDRB), Dhaka, Bangladesh; dInstitute of Anatomy, Medical Faculty, University Duisburg-Essen, 45147 Essen, Germany; eMolecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110; and fMedicine Service, Veterans Affairs Medical Center, St. Louis, MO 63106 Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved October 7, 2020 (received for review June 17, 2020) The enterotoxigenic Escherichia coli (ETEC) are among the most com- in enterocyte apical membranes, resulting in a net loss of salt and mon causes of diarrheal illness and death due to diarrhea among water into the lumen of the small intestine and ensuing watery young children in low-/middle-income countries (LMICs). ETEC have diarrheal illness (7). also been associated with important sequelae including malnutrition However, more recent studies have suggested that the molec- and stunting, placing children at further risk of death from diarrhea ular pathogenesis of these organisms is considerably more com- and other infections. Our understanding of the molecular pathogen- plex than had been appreciated (8, 9). One aspect of ETEC esis of acute diarrheal disease as well as the sequelae linked to ETEC virulence which has not been completely explored is the role are still evolving.
[Show full text]