IL-21 Exacerbates Autoimmune Myositis by Enhancing the Accumulation of GM-CSF−Producing Δγ T Cells in the Muscle

Total Page:16

File Type:pdf, Size:1020Kb

IL-21 Exacerbates Autoimmune Myositis by Enhancing the Accumulation of GM-CSF−Producing Δγ T Cells in the Muscle IL-21 Exacerbates Autoimmune Myositis by Enhancing the Accumulation of GM-CSF−Producing δγ T Cells in the Muscle Takahiro Kageyama, Akira Suto, Taro Iwamoto, Shigeru Tanaka, Kenichi Suehiro, Yusuke Downloaded from Yokoyama, Aiko Saku, Shunsuke Furuta, Kei Ikeda, Kotaro Suzuki, Koichi Hirose and Hiroshi Nakajima ImmunoHorizons 2017, 1 (8) 176-187 doi: https://doi.org/10.4049/immunohorizons.1700053 http://www.immunohorizons.org/content/1/8/176 http://www.immunohorizons.org/ This information is current as of September 26, 2021. Supplementary http://www.immunohorizons.org/content/suppl/2017/10/27/1.8.176.DCSupp Material lemental References This article cites 52 articles, 13 of which you can access for free at: http://www.immunohorizons.org/content/1/8/176.full#ref-list-1 by guest on September 26, 2021 Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://www.immunohorizons.org/alerts ImmunoHorizons is an open access journal published by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. ISSN 2573-7732. RESEARCH ARTICLE Adaptive Immunity IL-21 Exacerbates Autoimmune Myositis by Enhancing the Accumulation of GM-CSF–Producing gd T Cells in the Muscle Takahiro Kageyama,*,1 Akira Suto,*,†,1 Taro Iwamoto,* Shigeru Tanaka,* Kenichi Suehiro,* Yusuke Yokoyama,* Aiko Saku,* Shunsuke Furuta,* Kei Ikeda,* Kotaro Suzuki,* Koichi Hirose,* and Hiroshi Nakajima* *Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; and †Institute for Global Downloaded from Prominent Research, Chiba University, Chiba 260-8670, Japan ABSTRACT http://www.immunohorizons.org/ IL-21 is suggested to be involved in the development of some autoimmune diseases; however, the role of IL-21 in autoimmune inflammatory myopathies (IMs) remains unknown. In this study, we found that serum levels of IL-21 were significantly elevated in a subset of IM patients. Upon the induction of experimental autoimmune myositis (EAM), IL-21 was produced by CD4+ T cells in the muscle, and muscle weakness and muscle inflammation were less obvious in IL-21–deficient (IL-212/2) mice compared with those in wild-type (WT) mice. Analysis of inflammatory cytokine production from draining lymph node cells of EAM-induced mice revealed that GM-CSF production was significantly decreased in IL-212/2 mice. Importantly, GM-CSF production from gdT cells, but not CD4+ T cells, was significantly reduced in EAM-induced IL-212/2 mice. In addition, the severity of EAM was attenuated by GM-CSF neutralization in WT mice or gdT cell deficiency. The majority of muscle-infiltrating GM-CSF–producing gdT cells expressed Vg4+Vd4+ TCR, and the number of Vg4+Vd4+ cells in the muscle was significantly decreased in EAM-induced IL-212/2 mice as compared with that in EAM-induced WT mice. Moreover, muscle-infiltrating Vg4+Vd4+ cells exhibited CX3CR1high phenotype, and the induction of by guest on September 26, 2021 Cx3cl1, a ligand for CX3CR1, in the muscle was reduced in EAM-induced IL-212/2 mice. Furthermore, reporter assays revealed that IL-21 activated the promoter of Cx3cl1. Consistent with these findings, serum levels of CX3CL1 were correlated with the levels of IL-21 in IM patients. Taken together, these results suggest that IL-21 facilitates autoimmune myositis through the accumulation of GM-CSF–producing Vg4+Vd4+ cells in the muscle possibly via CX3CR1-CX3CL1 pathways. ImmunoHorizons, 2017, 1: 176–187. INTRODUCTION of IL-23 and produce IL-17A, IL-17F, IL-21, and GM-CSF (1, 2). IL- 17–producing gdT cells are also activated by IL-23 and implicated Autoimmune diseases are caused by a breakdown of tolerance to in the pathogenesis of autoimmune diseases (3, 4). Because the self-antigens and are characterized by the activation of T cells, blocking of IL-17 signaling is less effective than that of IL-23 in including pathogenic IL-17–producing Th cells (Th17 cells). autoimmune disease models such as experimental autoimmune Pathogenic Th17 cells are eventually differentiated in the presence encephalomyelitis (EAE) (5, 6), Th17 cell–related cytokines other Received for publication October 3, 2017. Accepted for publication October 9, 2017. Address correspondence and reprint requests to: Dr. Akira Suto and Dr. Hiroshi Nakajima, Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba 260-8670, Japan. E-mail addresses: [email protected] (A. Suto) and [email protected] (H.N.) ORCID: 0000-0002-2593-565X (A. Suto). 1T.K. and A. Suto contributed equally to this work. This work was supported by Grants-in-Aids for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, the Japanese Government, the Leading Graduate School Program at Chiba University, and the Institute for Global Prominent Research, Chiba University, Japan. Abbreviations used in this article: CADM, clinically amyopathic DM; DM, dermatomyositis; EAE, experimental autoimmune encephalomyelitis; EAM, experimental autoimmune myositis; GC, germinal center; gf, gram-force; IL-212/2, IL-21–deficient; IL-21R2/2, IL-21R–deficient; IM, inflammatory myopathy; LN, lymph node; Mac, macrophage; PD-1, programmed death-1; PM, polymyositis; qPCR, quantitative PCR; RORgt, retinoid-related orphan receptor g t; SLEC, short-lived effector CD8+ T cell; TCRd2/2, TCRd-deficient; Tfh, follicular B Th; WT, wild-type. The online version of this article contains supplemental material. This article is distributed under the terms of the CC BY-NC-ND 4.0 Unported license. Copyright © 2017 The Authors 176 https://doi.org/10.4049/immunohorizons.1700053 ImmunoHorizons is published by The American Association of Immunologists, Inc. ImmunoHorizons IL-21–Vg4+Vd4+ CELL AXIS IN AUTOIMMUNE MYOSITIS 177 than IL-17 seem to be important for the development of certain malignancy were excluded. We retrospectively assessed the autoimmune diseases. baseline patient characteristics, including age, sex, diagnosis, In the initiation phase of EAE, GM-CSF, a representative and presence of malignancy. The study was approved by the cytokine that induces the differentiation of neutrophils and Ethics Committees of Chiba University and was performed in macrophages (Macs), is produced by Th17 cells and serves a accordance with the principles expressed in the Declaration of nonredundant function (1, 2). In addition, it has been shown that Helsinki. IL-7–induced Stat5 activation promotes the development of GM- CSF–producing CD4+ T cells and causes severe EAE (7). More- ELISA over, GM-CSF is shown to be produced by gdT cells during the Serum levels of IL-21 and GM-GSF were analyzed by a human development of EAE (8). In humans, blocking of GM-CSF IL-21 ELISA MAX kit and a human GM-GSF ELISA MAX kit, signaling by a neutralizing Ab has shown promising results for respectively (BioLegend, San Diego, CA). Serum levels of human rheumatoid arthritis in early-phase clinical trials (9). These CX3CL1 and murine IL-21 were analyzed by a human CX3CL1/ findings suggest that GM-CSF is involved in the development of Fractalkine Quantikine ELISA Kit and a mouse IL-21 DuoSet some autoimmune diseases. ELISA, respectively (R&D Systems, Minneapolis, MN). Detection Recent studies have shown that IL-21 exhibits pleiotropic limits are as follows: human IL-21 .31.3 pg/ml, human GM-CSF Downloaded from effects on a variety of immune responses (10). IL-21 is produced by .7.8 pg/ml, human CX3CL1 .0.63 ng/ml, and murine IL-21 many types of CD4+ T cells such as Th17 cells (11), follicular B Th .62.5 pg/ml. (Tfh) cells (12, 13), IL-6– or IL-21–stimulated CD4+ T cells (14), CCR9+ Th cells (15), and “peripheral Th” cells (16). In addition, Mice IL-21 has been shown to be involved in the development of C57BL/6 mice were purchased from Charles River Laboratories http://www.immunohorizons.org/ autoimmune disease models, including type 1 diabetes in NOD (Atsugi, Kanagawa, Japan). IL-21–deficient (IL-212/2)mice mice (17), murine models of rheumatoid arthritis (18), and lupus (B6.129S-Il21tm1Lex/Mmucd) were obtained from Mutant Mouse (19, 20). Moreover, we have shown that IL-21–producing CD4+ Resource Research Centers. IL-21R–deficient (IL-21R2/2)mice T cells are increased in Foxp3 mutant scurfy mice, and that (27) were backcrossed over eight generations onto C57BL/6 mice. abrogation of IL-21 signaling in scurfy mice significantly prolongs TCRd-deficient (TCRd2/2) mice were obtained from the Jackson survival presumably by reducing autoimmune inflammation of Laboratory (Bar Harbor, ME). All mice were housed in micro- lung through the suppression of short-lived effector CD8+ T cells isolator cages under specific pathogen-free conditions. The Chiba (SLECs) (21). University Animal Care and Use Committee approved animal Polymyositis (PM) and dermatomyositis (DM) are the major procedures used in this study. subgroups of idiopathic inflammatory myopathy (IM), which is by guest on September 26, 2021 characterized by infiltration of inflammatory cells into the affected Experimental autoimmune myositis muscle (22, 23). Regarding the relationship between IL-21 and IM Experimental autoimmune myositis (EAM) was induced as in humans, it has been reported that CXCR32 CXCR5+ Th cells, described previously (28, 29). In brief, myosin was purified which are known to produce IL-21, are increased in peripheral from the muscle of C57BL/6 mice and emulsified with CFA with blood in juvenile DM patients who have skin rash and muscular 2mg/mlMycobacterium tuberculosis (CFA) (Chondrex, Redmond, weakness (24). However, the role of IL-21 in the pathogenesis of WA). Mice were immunized three times at 1-wk intervals with IM remains unknown. 1 mg of myosin in CFA on bilateral sides of hind foot pads (day 0), In this study, we addressed this issue by using a murine model tail base (day 7), and flanks (day 14) as described previously (29).
Recommended publications
  • C19) United States C12) Patent Application Publication C10) Pub
    1111111111111111 IIIIII IIIII 1111111111 11111 11111 111111111111111 1111111111 1111111111 11111111 US 20200081016Al c19) United States c12) Patent Application Publication c10) Pub. No.: US 2020/0081016 Al Talaat et al. (43) Pub. Date: Mar. 12, 2020 (54) BIOMARKERS FOR EARLY DIAGNOSIS Publication Classification AND DIFFERENTIATION OF (51) Int. Cl. MYCOBACTERIAL INFECTION GOIN 33/68 (2006.01) C12Q 116851 (2006.01) (71) Applicant: Wisconsin Alumni Research GOIN 33/569 (2006.01) Foundation, Madison, WI (US) (52) U.S. Cl. (72) Inventors: Adel Mohamed Talaat, Madison, WI CPC ......... GOIN 33/6854 (2013.01); GOIN 33/68 (US); Chia-wei Wu, Madison, WI (US) (2013.01); GOIN 2800/50 (2013.01); GOIN 33/5695 (2013.01); GOIN 2800/26 (2013.01); (21) Appl. No.: 16/555,819 C12Q 116851 (2013.01) (22) Filed: Aug. 29, 2019 (57) ABSTRACT Mycobacterial-specific biomarkers and methods of using Related U.S. Application Data such biomarkers for diagnosis of mycobacterial infection in (60) Provisional application No. 62/728,387, filed on Sep. a mammal are disclosed. 7, 2018. Specification includes a Sequence Listing. Patent Application Publication Mar. 12, 2020 Sheet 1 of 10 US 2020/0081016 Al FIG. 1 ·~{:: -{t i * !lpNbiNi$ 1 !lpN p~ra 111:111111 llillllll: 111!11,111llltllllll~ 11111 ■111 ~; C,,Nmnsus KR.IGINMTKX L.lC(X.AXXXXG AXXXXMPXTX RXO-GXVXXVG VKVXPWIPTX ® • ® l I I iipN lK>V(S ~Hl!lli!Wiofflij 1!11.llofJiillj mllB~lijftlt flol=fiolill ••t-il-~MM ~9 llpN p~ra HfHJoffit:torti ilffllGNillm miJllt~ttiollf ~•01:101111 llm:l:l1IA@~ iOO C,,nstmsus XXRXLXXGRS Vt IOGNT.LDP i LOt.MLSXXR XXGXOG.I...XVO ODXXXSR:AXM t2:;: i-/4~~ ! l 1 I~~~~b;:: llllil~l:1:1 llil 111111:1~:111~ 1111111::;1 1lllilllll: ~:~ C,,nimnsus XXXXXXXPGP QtHVDVXXI...X XPGPAGXIPA RHYRPXGGXX QXPt.l...VFYHG Consl:lrvat,ofl -:§;::.
    [Show full text]
  • Interleukin-21 Is Required for the Development of Type 1 Diabetes in NOD Mice Andrew P.R
    ORIGINAL ARTICLE Interleukin-21 Is Required for the Development of Type 1 Diabetes in NOD Mice Andrew P.R. Sutherland,1,2 Tom Van Belle,3 Andrea L. Wurster,1 Akira Suto,1 Monia Michaud,1 Dorothy Zhang,1 Michael J. Grusby,1,4 and Matthias von Herrath3 OBJECTIVE—Interleukin (IL)-21 is a type 1 cytokine that has known as insulin-dependent diabetes (idd) loci that confer been implicated in the pathogenesis of type 1 diabetes via the susceptibility to or protection from the development of unique biology of the nonobese diabetic (NOD) mouse strain. type 1 diabetes (2). Of the ϳ15 regions identified, idd3isof The aim of this study was to investigate a causal role for IL-21 in particular importance, because congenic NOD lines con- type 1 diabetes. taining alleles from protected strains at this locus are RESEARCH DESIGN AND METHODS—We generated IL- significantly less susceptible to diabetes. To date, idd3is 21R–deficient NOD mice and C57Bl/6 mice expressing IL-21 in the most potent disease modifying the non–major histo- pancreatic ␤-cells, allowing the determination of the role of compatibility complex (MHC) locus (3). Therefore, some insufficient and excessive IL-21 signaling in type 1 diabetes. of the genes within the idd3 interval must play a crucial role in regulating immune destruction of pancreatic RESULTS—Deficiency in IL-21R expression renders NOD mice ␤ resistant to insulitis, production of insulin autoantibodies, and -cells. onset of type 1 diabetes. The lymphoid compartment in IL- Among the several candidate genes within the idd3 21RϪ/Ϫ NOD is normal and does not contain an increased locus, interleukin (IL)-21 is of particular interest, because regulatory T-cell fraction or diminished effector cytokine re- dysregulated IL-21 production and signaling has been sponses.
    [Show full text]
  • Interleukin 21 and Its Receptor Are Involved in NK Cell Expansion and Regulation of Lymphocyte Function
    articles Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function Julia Parrish-Novak*, Stacey R. Dillon†, Andrew Nelson†, Angie Hammond*, Cindy Sprecher*, Jane A. Gross†, Janet Johnston†, Karen Madden*, Wenfeng Xu*, Jim West‡, Sara Schrader*, Steve Burkhead*, Mark Heipel*, Cameron Brandt*, Joseph L. Kuijper*, Janet Kramer*, Darrell Conklin§, Scott R. Presnell§, Jon Berry‡, Faith Shiota†, Susan Bort†, Kevin Hambly†, Sherri Mudri†, Chris Clegg†, Margaret Moorek, Francis J. Grant§, Catherine Lofton-Dayk, Teresa Gilbertk, Fenella Raymondk, Andrew Ching§, Lena Yaok, Deb Smithk, Philippa Websterk, Theodore Whitmorek, Mark Maurerk, Kenneth Kaushansky¶, Rick D. Holly* & Don Foster* Departments of * Functional Cloning, † Immunology, ‡ Protein Biochemistry, § Biomolecular Informatics, and k Genetics, ZymoGenetics, Inc., 1201 Eastlake Avenue E., Seattle, Washington 98102, USA ¶ Division of Hematology, Box 35 7710, University of Washington, School of Medicine, 1959 NE Pacific Street, Seattle, Washington 98195, USA ............................................................................................................................................................................................................................................................................ Cytokines are important in the regulation of haematopoiesis and immune responses, and can influence lymphocyte development. Here we have identified a class I cytokine receptor that is selectively expressed in lymphoid tissues and
    [Show full text]
  • Interleukin-21 in Immunity and Autoimmunity
    Interleukin-21 in immunity and autoimmunity Alexis Vogelzang A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Medicine, University of New South Wales Mucosal Autoimmunity Unit, Garvan Institute of Medical Research Sydney, Australia Awarded September 2010 1 ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Alexis Vogelzang Date …………………………………………….............. 2 COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.
    [Show full text]
  • Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
    UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type.
    [Show full text]
  • Mucosal Interleukin-21 Mrna Expression Level Is High in Patients with Helicobacter Pylori and Is Associated with the Severity of Gastritis
    Clinical immunology DOI: 10.5114/ceji.2015.50835 Mucosal interleukin-21 mRNA expression level is high in patients with Helicobacter pylori and is associated with the severity of gastritis NADER BAGHERI1, FATEMEH AZADEGAN-DEHKORDI2, MAHSA SHIRZAD3, BENHAM ZAMANZAD2, GHORBANALI RAHIMIAN4, AFSHIN TAGHIKHANI4, MAHMOUD RAFIEIAN-KOPAEI5, HEDAYATOLLAH SHIRZAD2 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran 2Cellular and Molecular Research Centre, Shahrekord University of Medical Sciences, Shahrekord, Iran 3Faculty of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran 4Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran 5Medical Plants Research Centre, Shahrekord University of Medical Sciences, Shahrekord, Iran Abstract Helicobacter pylori (H. pylori) infection is associated with gastritis and marked infiltration of the gastric mucosa by several cytokines secreting inflammatory cells. Different clinical forms of the infection may reflect distinctive patterns of cytokine expression. Interleukin (IL)-17, IL-21, IL-22, and IL-23 have been reported to be involved in H. pylori-induced gastric mucosal inflammation, but the details and relationship to different patterns of inflammation and virulence factors remain unclear. The present study was launched to analyse IL-6 expression in H. pylori-infected and uninfected gas- tric patients and to investigate its correlation with chronic gastritis among H. pylori-infected pa- tients. Total RNA was extracted from the gastric antrum biopsies of 48 H. pylori-infected patients and 38 H. pylori uninfected patients. Mucosal IL-21 mRNA expression level in H. pylori-infected and unin- fected gastric biopsy was determined by real-time PCR. The presence of vacA (vacuolating cytotoxin A) and cagA (cytotoxin associated gene A) virulence factors were evaluated using PCR.
    [Show full text]
  • Opposing Roles of STAT1 and STAT3 in IL-21 Function in + CD4 T Cells
    Opposing roles of STAT1 and STAT3 in IL-21 function in + CD4 T cells Chi-Keung Wana,1, Allison B. Andraskia,1,2, Rosanne Spolskia, Peng Lia, Majid Kazemiana, Jangsuk Oha, Leigh Samselb, Phillip A. Swanson IIc, Dorian B. McGavernc, Elizabeth P. Sampaiod, Alexandra F. Freemand, Joshua D. Milnere, Steven M. Hollandd, and Warren J. Leonarda,3 aLaboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674; bFlow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674; cViral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1674; dLaboratory of Clinical Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1674; and eLaboratory of Allergic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1674 Contributed by Warren J. Leonard, June 18, 2015 (sent for review May 19, 2015; reviewed by Thomas R. Malek and Howard A. Young) + IL-21 is a type I cytokine essential for immune cell differentiation STAT1 to promote CD8 T-cell cytotoxicity and apoptosis of and function. Although IL-21 can activate several STAT family mantle cell lymphoma (16, 17). We now have elucidated the transcription factors, previous studies focused mainly on the role roles of STAT1 in IL-21 signaling and identified an interplay of STAT3 in IL-21 signaling. Here, we investigated the role of STAT1 between STAT1 and STAT3 in mediating the actions of IL-21 + and show that STAT1 and STAT3 have at least partially opposing in CD4 T cells, and have also found increased IL-21–mediated rolesinIL-21signalinginCD4+ T cells.
    [Show full text]
  • Human Cytokine Response Profiles
    Comprehensive Understanding of the Human Cytokine Response Profiles A. Background The current project aims to collect datasets profiling gene expression patterns of human cytokine treatment response from the NCBI GEO and EBI ArrayExpress databases. The Framework for Data Curation already hosted a list of candidate datasets. You will read the study design and sample annotations to select the relevant datasets and label the sample conditions to enable automatic analysis. If you want to build a new data collection project for your topic of interest instead of working on our existing cytokine project, please read section D. We will explain the cytokine project’s configurations to give you an example on creating your curation task. A.1. Cytokine Cytokines are a broad category of small proteins mediating cell signaling. Many cell types can release cytokines and receive cytokines from other producers through receptors on the cell surface. Despite some overlap in the literature terminology, we exclude chemokines, hormones, or growth factors, which are also essential cell signaling molecules. Meanwhile, we count two cytokines in the same family as the same if they share the same receptors. In this project, we will focus on the following families and use the member symbols as standard names (Table 1). Family Members (use these symbols as standard cytokine names) Colony-stimulating factor GCSF, GMCSF, MCSF Interferon IFNA, IFNB, IFNG Interleukin IL1, IL1RA, IL2, IL3, IL4, IL5, IL6, IL7, IL9, IL10, IL11, IL12, IL13, IL15, IL16, IL17, IL18, IL19, IL20, IL21, IL22, IL23, IL24, IL25, IL26, IL27, IL28, IL29, IL30, IL31, IL32, IL33, IL34, IL35, IL36, IL36RA, IL37, TSLP, LIF, OSM Tumor necrosis factor TNFA, LTA, LTB, CD40L, FASL, CD27L, CD30L, 41BBL, TRAIL, OPGL, APRIL, LIGHT, TWEAK, BAFF Unassigned TGFB, MIF Table 1.
    [Show full text]
  • RT² Profiler PCR Array (384-Well Format) Human Inflammatory Response & Autoimmunity
    RT² Profiler PCR Array (384-Well Format) Human Inflammatory Response & Autoimmunity Cat. no. 330231 PAHS-3803ZE For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 7900HT (384-well block), Format E ViiA™ 7 (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (384-well block) Format G Description The Human Inflammatory Response & Autoimmunity RT² Profiler PCR Array profiles the expression of 370 key genes involved in immune response during autoimmunity and inflammation. It represents the expression of inflammatory cytokines, chemokines, and their receptors. It also contains genes related to the production and metabolism of cytokines. Genes involved in cytokine-cytokine receptor interactions are as well as thoroughly researched panels of genes involved in the acute-phase, inflammatory, and humoral immune responses. Using real-time PCR, you can easily and reliably analyze the expression of a focused panel of genes related to autoimmunity and inflammation with this array. For further details, consult the RT² Profiler PCR Array Handbook. Sample & Assay Technologies Shipping and storage RT² Profiler PCR Arrays in formats E and G are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products. For long term storage, keep plates at –20°C. Note: Ensure that you have the correct RT² Profiler PCR Array format for your real-time cycler (see table above). Note: Open the package and store
    [Show full text]
  • Regulatory Cells T+ Disease in the Absence of Foxp3 IL-21 Contributes
    IL-21 Contributes to Fatal Inflammatory Disease in the Absence of Foxp3 + T Regulatory Cells This information is current as Alexis Vogelzang, Helen M. McGuire, Sue M. Liu, Brian of September 28, 2021. Gloss, Karessa Mercado, Peter Earls, Marcel E. Dinger, Marcel Batten, Jonathan Sprent and Cecile King J Immunol published online 20 January 2014 http://www.jimmunol.org/content/early/2014/01/19/jimmun ol.1302285 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/01/20/jimmunol.130228 Material 5.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 20, 2014, doi:10.4049/jimmunol.1302285 The Journal of Immunology IL-21 Contributes to Fatal Inflammatory Disease in the Absence of Foxp3+ T Regulatory Cells Alexis Vogelzang,*,† Helen M. McGuire,*,† Sue M. Liu,*,† Brian Gloss,‡ Karessa Mercado,*,† Peter Earls,x Marcel E.
    [Show full text]
  • Differential Effects of Interleukin-2 and Interleukin-15 Versus Interleukin-21 on CD4+ Cutaneous T-Cell Lymphoma Cells
    Research Article Differential Effects of Interleukin-2 and Interleukin-15 versus Interleukin-21 on CD4+ Cutaneous T-Cell Lymphoma Cells Michal Marzec,1 Krzysztof Halasa,1 Monika Kasprzycka,1 Maria Wysocka,2 Xiaobin Liu,1 John W. Tobias,3 Donald Baldwin,1,4 Qian Zhang,1 Niels Odum,5 Alain H. Rook,2 and Mariusz A. Wasik1 Departments of 1Pathology and Laboratory Medicine, 2Dermatology, and 3Biostatistics and 4Penn Microarray Facility, University of Pennsylvania, Philadelphia, Pennsylvania and 5Institute of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark Abstract and h chains and, similar to IL-2, also uses the third, IL-15–specific, nontransducing a chain. Consequently, IL-2 and IL-15 share a In this study, we compared the effects of interleukin-2 (IL-2), IL-15, and IL-21 on gene expression, activation of cell number of properties, including stimulation of T-cell, natural killer signaling pathways, and functional properties of cells derived (NK)–cell, and B-cell proliferation and functional maturation, but from CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both certain features unique to each of these cytokines have also been IL-2 and IL-15 modulated, in a CTCL cell line, the expression described (1, 2). IL-21 is also quite pleiotropic and displays a of >1,000 gene transcripts by at least 2-fold, IL-21 up-regulated spectrum of effects on immune cells (3), with its ability to increase <40 genes. All three cytokines induced tyrosine phosphoryla- cytotoxicity of both NK (4) and CD8+ T cells (5) being the best g tion of Jak1 and Jak3 in CTCL cell lines and native leukemic defined.
    [Show full text]
  • Interleukin-21 Drives Proliferation and Differentiation of Porcine Memory B Cells Into Antibody Secreting Cells
    RESEARCH ARTICLE Interleukin-21 Drives Proliferation and Differentiation of Porcine Memory B Cells into Antibody Secreting Cells Michael C. Rahe*, Michael P. Murtaugh Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States of America * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Immunological prevention of infectious disease, especially viral, is based on antigen-specific long-lived memory B cells. To test for cellular proliferation and differentiation factors in swine, an outbred model for humans, CD21+ B cells were activated in vitro with CD40L and stimulated with purported stimulatory cytokines to characterize functional responses. IL-21 OPEN ACCESS induced a 3-fold expansion in total cell numbers with roughly 15% of all B cells differentiating Citation: Rahe MC, Murtaugh MP (2017) to IgM or IgG antibody secreting cells (ASCs.) However, even with robust proliferation, cellu- Interleukin-21 Drives Proliferation and lar viability rapidly deteriorated. Therefore, a proliferation inducing ligand (APRIL) and B cell Differentiation of Porcine Memory B Cells into activating factor (BAFF) were evaluated as survival and maintenance factors. BAFF was Antibody Secreting Cells. PLoS ONE 12(1): e0171171. doi:10.1371/journal.pone.0171171 effective at enhancing the viability of mature B cells as well as ASCs, while APRIL was only effective for ASCs. Both cytokines increased approximately two-fold the amount of IgM and Editor: Gourapura J. Renukaradhya, The Ohio State University, UNITED STATES IgG which was secreted by IL-21 differentiated ASCs. Mature B cells from porcine reproduc- tive and respiratory virus (PRRSV) immune and naïve age-matched pigs were activated and Received: December 1, 2016 treated with IL-21 and then tested for memory cell differentiation using a PRRSV non-struc- Accepted: January 16, 2017 tural protein 7 ELISPOT and ELISA.
    [Show full text]