Statistical Process Control (SPC)

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Process Control (SPC) Page Statistical Process Control (SPC) Page 2 Table of Contents Introduction to Continuous Improvement and Statistical Process Control ........ Module 1 Basic Statistics for Statistical Process Control ............................................... Module 2 Sources of Variations: Common and Special Causes ....................................... Module 3 Distribution and Statistics for Normally Distributed Data................................. Module 4 Evaluation of Capability for a Stable Process ........ ....................................... Module 5 Average and Range Charts ............................................................................ Module 6 Interpretation of Control Charts ..................................................................... Module 7 Strategies for Sampling Data ........................................................................ Module 8 Average and Standard Deviation Charts ........................................................ Module 9 . Median and Range Charts ............................................................................. Module 10 Individual and Moving Range Chart ...................... ....................................... Module 11 Proportion and Number of Nonconforming Charts ...................................... Module 12 Number of Nonconformities and Nonconformities per unit Charts ............. Module 13 Application Guidelines ................................................................................. Module 14 Application Examples .................................................................................. Module 15 Appendices ................................................................................................... Module 16 R. Roy/Nutek, Inc. Statistical Process Control – Management Overview Version 0509 Page 3 Short List of Notations x = a number (data, sample reading). x = the average (mean) of a set of x. x = the average of the averages x , also called grand average. ≈ X = the median of the numbers x. (Symbol ≈ used for median) ≈ X = the average of the medians ∑ X = the sum of numbers x n = the total number of data K = the number of samples (if 100 parts are grouped into 20 groups of 5 each for measurement purposes, then K = 20, n = 5 for group, n = 100 for all data.) M = the mode of numbers S = the standard deviation of numbers ( SX , S X , SR , etc.). S = the average of the Standard deviation (S) R = the range of numbers R = the average of the ranges (R). µ X = The average of all possible number (even of parts that are not included in measurement) σ X = the standard deviation of all possible numbers < = less than < = less than or equal to > = greater than > = greater than or equal to = square root of quantity under the radical sign R. Roy/Nutek, Inc. Statistical Process Control – Management Overview Version 0509 Page 4 Course Overview Industrial production often involves mass production of the same part. For such parts to properly assemble and function in the final product, it is necessary to keep the variation in quality characteristic to a minimum. The variation in quality characteristics are caused mainly by two sources; known as common and special causes. Statistical process control (SPC) is used to study the process performance and understand sources of variation with the intention of making corrective actions to reduce variation. This brief session covers the basic concepts of statistical analysis and their application to practical problems in process control. It will deal with such standard tools as histograms, X-bar and R charts, process capability studies and sampling plans. It is intended to help attendees decide if SPC will be helpful their activities and whether further training should be sought before applications. Attendees to this session learn how to use histograms, Pareto charts, scatter diagrams, etc. The primary focus of the course will be to help attendees develop a working level understanding of the normal distribution and how to construct control charts for variable and attribute data. The attendees are expected to gather understanding of how to use DOE results for SPC, calculate process capabilities, and learn how to communicate with design engineering in terms of process capabilities. Instructor Ranjit K. Roy, Ph.D., P.E. (M.E.) is an engineering consultant specializing in Taguchi approach of quality improvement. Dr. Roy has achieved international recognition as a consultant and trainer for his down-to-earth teaching style of the Taguchi experimental design technique , project management , and several other quality engineering topics. Dr. Roy began his career as senior design engineer with Burroughs Corporation following completion of graduate studies in engineering at the University of Missouri-Rolla in 1972. He then worked for General Motors Corp. (1976-1987) assuming various engineering responsibilities with his last position as that of reliability manager. Dr. Roy is a fellow of the American Society of Quality. R. Roy/Nutek, Inc. Statistical Process Control – Management Overview Version 0509 Page 5 SPC STEP 6 Learning Steps Learn the rules of out-of-control STEP 5 detection based on probability of Understand the logic occurrence. behind Examine control standardization of charts carefully data collection and simplification of STEP 4 formula for Learn what are: calculations of limits - In control for control charts. - Stable - In specification - Capable STEP 3 Understand that process variation is the result of COMMON- CAUSE and SPECIAL-CAUSE variations (Fundamental Equation of SPC) STEP 2 Learn the Normal Theory and the Central Limit Theorem and their implication well. - if X is normal the distribution of the process STEP 1 average is also normal. Understand - If distribution of X is not properties of normal, the distribution of normal sample mean is still distribution. approximatly normal . - All data to fall within +/- 3 Std. Dev. under common cause variations R. Roy/Nutek, Inc. Statistical Process Control – Management Overview Version 0509 Page 6 SPC Application Steps (Observe the Process - Define Standard -Compare Performance) Carefully examine data for out-of- control situations. Mark points based on the “Rules”. 3 Calculate limits and construct the desired control charts. Plot data. 2 Collect data and calculate sample averages, ranges, grand average, 1 average range, etc. R. Roy/Nutek, Inc. Statistical Process Control – Management Overview Version 0509 Page 7 What is Statistical Process Control ? Control Process What does it mean? What does it mean? To correct: Statistical - Correct to what? Any task that affects - How do would we cost and performance What does it mean? know that it is not of products or services: right? - Incoming order Inexact: - How bad are we? processing It is never the exact - How far off is it from - Payroll checks value. what it should be? - Accounts payable - How fast do we need - Part fabrication Predicted value based to correct the situation? (milling, turning, on more than one welding, molding, etc) observed data: To keep it where it - Typing/data entry Data used for - Assembly of parts should be: calculating any statistic - Soldering - How do we find out (numeric value) are where should it be? more than one. Any operation or - What can we do to sequence of operation bring it where it should Estimate based on a with measurable be? small data sample from output: - How do we know it is the whole: not where it should be? Valid for average performance: Conclusions based on past observations: R. Roy/Nutek, Inc. Statistical Process Control – Management Overview Version 0509 Page 8 Module 1 Introduction to Continuous Improvement and Statistical Process Control R. Roy/Nutek, Inc. Statistical Process Control – Management Overview Version 0509 Page 9 Introduction to Continuous Improvement and Statistical Process Control What is Quality? - Meeting Specifications - Preventing Defects - Practicing Continuous Improvement “Quality is meeting or exceeding customer expectations at all times in regards to performance, durability, reliability, and delivery at a cost that represents value.” “Quality is producing a reliable & durable product to exact standard at the lowest cost for the customers.” How? - Product Control - Process Control In 1970’s W. Deming, J. Juran and others emphasized the need to shift focus from product control to process control. Stop depending on inspection to achieve quality. Eliminate the need for extensive inspection programs by designing and building quality into the product or service in the first place. - W. Edward Deming A Sample Process R. Roy/Nutek, Inc. Statistical Process Control – Management Overview Version 0509 Page 10 Transformation Machine * Input * Output * Products * People - Work process * Services * Machine - Add value to input * Materials * Customer - Assemble materials satisfaction Product Control Vs. Process Control Items/Activities How it is done Product Control Process Control Practical Objectives Keep Product Characteristics Try to be on target with within specifications minimum variation satisfying the quality standard Ideal Objectives Detect and eliminate non- Assure that non-conforming conforming products products are not produced Improvement Strategy Inspect and maintain outgoing Institute and maintain product quality continuous quality improvement procedures Statistical Techniques Acceptance Sampling Control Charts (SPC) R. Roy/Nutek, Inc. Statistical Process Control – Management Overview Version 0509 Page 11 Module 2 Basic
Recommended publications
  • Implementing SPC for Non-Normal Processes with the I-MR Chart: a Case Study
    Implementing SPC for non-normal processes with the I-MR chart: A case study Axl Elisson Master of Science Thesis TPRMM 2017 KTH Industrial Engineering and Management Production Engineering and Management SE-100 44 STOCKHOLM Acknowledgements This master thesis was performed at the brake manufacturer Haldex as my master of science degree project in Industrial Engineering and Management at the Royal Institute of Technology (KTH) in Stockholm, Sweden. It was conducted during the spring semester of 2017. I would first like to thank my supervisor at Haldex, Roman Berg, and Annika Carlius for their daily support and guidance which made this project possible. I would also like to thank the quality department, production engineers and operators at Haldex for all insight in different subjects. Finally, I would like to thank my supervisor at KTH, Jerzy Mikler, for his support during my thesis. All of your combined expertise have been very valuable. Stockholm, July 2017 Axl Elisson Abstract The application of statistical process control (SPC) requires normal distributed data that is in statistical control in order to determine valid process capability indices and to set control limits that reflects the process’ true variation. This study examines a case of several non-normal processes and evaluates methods to estimate the process capability and set control limits that is in relation to the processes’ distributions. Box-Cox transformation, Johnson transformation, Clements method and process performance indices were compared to estimate the process capability and the Anderson-Darling goodness-of-fit test was used to identify process distribution. Control limits were compared using Clements method, the sample standard deviation and from machine tool variation.
    [Show full text]
  • Use Process Capability to Ensure Product Quality
    Use Process Capability to Ensure Product Quality Lawrence X. Yu, Ph.D. Director (acting) Office of Pharmaceutical Science, CDER, FDA FDA/ PQRI Conference on Evolving Product Quality September 16-17, 2104, Bethesda, MD 1 2 Quality by Testing vs. Quality by Design Quality by Testing – Specification acceptance criteria are based on one or more batch data (process capability) – Testing must be made to release batches Quality by Design – Specification acceptance criteria are based on performance – Testing may not be necessary to release batches L. X. Yu. Pharm. Res. 25:781-791 (2008) 3 ICH Q6A: Test Procedures and Acceptance Criteria… 4 5 Pharmaceutical QbD Objectives Achieve meaningful product quality specifications that are based on assuring clinical performance Increase process capability and reduce product variability and defects by enhancing product and process design, understanding, and control Increase product development and manufacturing efficiencies Enhance root cause analysis and post-approval change management 6 Concept of Process Capability First introduced in Statistical Quality Control Handbook by the Western Electric Company (1956). – “process capability” is defined as “the natural or undisturbed performance after extraneous influences are eliminated. This is determined by plotting data on a control chart.” ISO, AIAG, ASQ, ASTM ….. published their guideline or manual on process capability index calculation 7 Nomenclature Four indices: – Cp: process capability index – Cpk: minimum process capability index – Pp: process
    [Show full text]
  • Mistakeproofing the Design of Construction Processes Using Inventive Problem Solving (TRIZ)
    www.cpwr.com • www.elcosh.org Mistakeproofing The Design of Construction Processes Using Inventive Problem Solving (TRIZ) Iris D. Tommelein Sevilay Demirkesen University of California, Berkeley February 2018 8484 Georgia Avenue Suite 1000 Silver Spring, MD 20910 phone: 301.578.8500 fax: 301.578.8572 ©2018, CPWR-The Center for Construction Research and Training. All rights reserved. CPWR is the research and training arm of NABTU. Production of this document was supported by cooperative agreement OH 009762 from the National Institute for Occupational Safety and Health (NIOSH). The contents are solely the responsibility of the authors and do not necessarily represent the official views of NIOSH. MISTAKEPROOFING THE DESIGN OF CONSTRUCTION PROCESSES USING INVENTIVE PROBLEM SOLVING (TRIZ) Iris D. Tommelein and Sevilay Demirkesen University of California, Berkeley February 2018 CPWR Small Study Final Report 8484 Georgia Avenue, Suite 1000 Silver Spring, MD 20910 www. cpwr.com • www.elcosh.org TEL: 301.578.8500 © 2018, CPWR – The Center for Construction Research and Training. CPWR, the research and training arm of the Building and Construction Trades Department, AFL-CIO, is uniquely situated to serve construction workers, contractors, practitioners, and the scientific community. This report was prepared by the authors noted. Funding for this research study was made possible by a cooperative agreement (U60 OH009762, CFDA #93.262) with the National Institute for Occupational Safety and Health (NIOSH). The contents are solely the responsibility of the authors and do not necessarily represent the official views of NIOSH or CPWR. i ABOUT THE PROJECT PRODUCTION SYSTEMS LABORATORY (P2SL) AT UC BERKELEY The Project Production Systems Laboratory (P2SL) at UC Berkeley is a research institute dedicated to developing and deploying knowledge and tools for project management.
    [Show full text]
  • Chapter 6: Process Capability Analysis for Six Sigma
    Six Sigma Quality: Concepts & Cases‐ Volume I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB® APPLICATIONS Chapter 6 PROCESS CAPABILITY ANALYSIS FOR SIX SIGMA © Amar Sahay, Ph.D. Master Black Belt 1 Chapter 6: Process Capability Analysis for Six Sigma CHAPTER HIGHLIGHTS This chapter deals with the concepts and applications of process capability analysis in Six Sigma. Process Capability Analysis is an important part of an overall quality improvement program. Here we discuss the following topics relating to process capability and Six Sigma: 1. Process capability concepts and fundamentals 2. Connection between the process capability and Six Sigma 3. Specification limits and process capability indices 4. Short‐term and long‐term variability in the process and how they relate to process capability 5. Calculating the short‐term or long‐term process capability 6. Using the process capability analysis to: assess the process variability establish specification limits (or, setting up realistic tolerances) determine how well the process will hold the tolerances (the difference between specifications) determine the process variability relative to the specifications reduce or eliminate the variability to a great extent 7. Use the process capability to answer the following questions: Is the process meeting customer specifications? How will the process perform in the future? Are improvements needed in the process? Have we sustained these improvements, or has the process regressed to its previous unimproved state? 8. Calculating process
    [Show full text]
  • Lean Six Sigma Rapid Cycle Improvement Agenda
    Lean Six Sigma Rapid Cycle Improvement Agenda 1. History of Lean and Six Sigma 2. DMAIC 3. Rapid Continuous Improvement – Quick Wins – PDSA – Kaizen Lean Six Sigma Lean Manufacturing Six Sigma (Toyota Production System) DMAIC • T.I.M.W.O.O.D • PROJECT CHARTER • 5S • FMEA • SMED • PDSA/PDCA • TAKT TIME • SWOT • KAN BAN • ROOT CAUSE ANALYSIS • JUST IN TIME • FMEA • ANDON • SIPOC • KAIZEN • PROCESS MAP • VALUE STREAM MAP • STATISTICAL CONTROLS Process Improvement 3 Lean Manufacturing • Lean has been around a long time: – Pioneered by Ford in the early 1900’s (33 hrs from iron ore to finished Model T, almost zero inventory but also zero flexibility!) – Perfected by Toyota post WWII (multiple models/colors/options, rapid setups, Kanban, mistake-proofing, almost zero inventory with maximum flexibility!) • Known by many names: – Toyota Production System – Just-In-Time – Continuous Flow • Outwardly focused on being flexible to meet customer demand, inwardly focused on reducing/eliminating the waste and cost in all processes Six Sigma • Motorola was the first advocate in the 80’s • Six Sigma Black Belt methodology began in late 80’s/early 90’s • Project implementers names includes “Black Belts”, “Top Guns”, “Change Agents”, “Trailblazers”, etc. • Implementers are expected to deliver annual benefits between $500,000 and $1,000,000 through 3-5 projects per year • Outwardly focused on Voice of the Customer, inwardly focused on using statistical tools on projects that yield high return on investment DMAIC Define Measure Analyze Improve Control • Project Charter • Value Stream Mapping • Replenishment Pull/Kanban • Mistake-Proofing/ • Process Constraint ID and • Voice of the Customer • Value of Speed (Process • Stocking Strategy Zero Defects Takt Time Analysis and Kano Analysis Cycle Efficiency / Little’s • Process Flow Improvement • Standard Operating • Cause & Effect Analysis • SIPOC Map Law) • Process Balancing Procedures (SOP’s) • FMEA • Project Valuation / • Operational Definitions • Analytical Batch Sizing • Process Control Plans • Hypothesis Tests/Conf.
    [Show full text]
  • Chapter 15 Statistics for Quality: Control and Capability
    Aaron_Amat/Deposit Photos Statistics for Quality: 15 Control and Capability Introduction CHAPTER OUTLINE For nearly 100 years, manufacturers have benefited from a variety of statis­ tical tools for the monitoring and control of their critical processes. But in 15.1 Statistical Process more recent years, companies have learned to integrate these tools into their Control corporate management systems dedicated to continual improvement of their 15.2 Variable Control processes. Charts ● Health care organizations are increasingly using quality improvement methods 15.3 Process Capability to improve operations, outcomes, and patient satisfaction. The Mayo Clinic, Johns Indices Hopkins Hospital, and New York-Presbyterian Hospital employ hundreds of quality professionals trained in Six Sigma techniques. As a result of having these focused 15.4 Attribute Control quality professionals, these hospitals have achieved numerous improvements Charts ranging from reduced blood waste due to better control of temperature variation to reduced waiting time for treatment of potential heart attack victims. ● Acushnet Company is the maker of Titleist golf balls, which is among the most popular brands used by professional and recreational golfers. To maintain consistency of the balls, Acushnet relies on statistical process control methods to control manufacturing processes. ● Cree Incorporated is a market-leading innovator of LED (light-emitting diode) lighting. Cree’s light bulbs were used to glow several venues at the Beijing Olympics and are being used in the first U.S. LED-based highway lighting system in Minneapolis. Cree’s mission is to continually improve upon its manufacturing processes so as to produce energy-efficient, defect-free, and environmentally 15-1 19_psbe5e_10900_ch15_15-1_15-58.indd 1 09/10/19 9:23 AM 15-2 Chapter 15 Statistics for Quality: Control and Capability friendly LEDs.
    [Show full text]
  • Statistical Quality Control and Process Capability Analysis for Variability
    ering & ine M g a et al., n n E Rábago-Remy Ind Eng Manage 2014, 3:4 a l g a i e r m t s DOI: 10.4172/2169-0316.1000137 e u n d t n I Industrial Engineering & Management ISSN: 2169-0316 Research Article Open Access Statistical Quality Control and Process Capability Analysis for Variability Reduction of the Tomato Paste Filling Process Dulce María Rábago-Remy, Edith Padilla-Gasca and Jesús Gabriel Rangel-Peraza* Departamento de Estudios de Posgrado e Investigación, Instituto Tecnológico de Culiacán, Juan de Dios Batiz 310 Pte. Col. Guadalupe. Culiacán Sinaloa, México Abstract In this research some techniques for process statistical control were applied, such as frequency histograms, Pareto diagrams, process capability analysis and control charts. The purpose of this investigation was to reduce the variability of the canned tomato paste filling process coming from a tomato processing food industry that has problems with the net weight of their processed product. The results of the process capability analysis showed that 35.52% of the observations were out of the specifications during the months in study, which generates a real capability of the process (Cpk) of 0.124, and it indicates that the process does not have enough ability to fulfill the required specifications by the firm. The process potential capability (Cp) is 0.676. Given that Cpk < Cp, then it is concluded that the process is not centered, indicating that the measurement of the filling process is away from the center of the specifications. The process fits 0.371 sigma between the process mean and the nearest specification limit.
    [Show full text]
  • Poka-Yoke and Quality Control on Traub Machine for Kick Starter Driven Shaft
    Journal of Material Science and Mechanical Engineering (JMSME) Print ISSN: 2393-9095; Online ISSN: 2393-9109; Volume 2, Number 7; April-June, 2015 pp. 10-15 © Krishi Sanskriti Publications http://www.krishisanskriti.org/jmsme.html Poka-Yoke and Quality Control on Traub Machine for Kick Starter Driven Shaft Atif Jamal 1, Ujjwal Kumar 2, Aftab A. Ansari 3, Balwant Singh 4 1,2,3,4 M.Tech Scholar, SET, Sharda University, GN, U.P [email protected], [email protected] [email protected], [email protected] Abstract: This study was conducted in manufacturing creation of process stoppages, and provides tools and methods environment and focused at machining operation. Fair Products for designing them. India, which manufactures auto ancillaries, was selected for this research. Fair Products has been facing tremendous pressure of In study Chen et al. (1996) , has also considers that a Poka- quality level and in house rejection due to under sizing of the parts manufactured on Traub Machine. After sometime the yoke is a mechanism for detecting, eliminating, and correcting process begins to fail as number of defects begins to increase as errors at their source, before they reach the customer. such the management has thrown challenge to the manufacturing team to find ways to improve the outgoing quality at machining C M Hinckley (2003) although the occurrence of mistakes is operation. Thus, Error Proofing method was adopted for inevitable, non-conformances and defects is not. To prevent implementation at Traub Machining operation. Experimental defects caused by mistakes, our approach to quality control research was carried out to see the effectiveness of Error must include several new elements.
    [Show full text]
  • Chapter 5: Quality Tools for Six Sigma 2
    Six Sigma Quality: Concepts & Cases‐ Volume I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB® APPLICATIONS Chapter 5 Quality Tools for Six Sigma Basic Quality Tools and Seven New Tools ©Amar Sahay, Ph.D. 1 Chapter 5: Quality Tools for Six Sigma 2 Chapter Highlights This chapter deals with the quality tools widely used in Six Sigma and quality improvement programs. The chapter includes the seven basic tools of quality, the seven new tools of quality, and another set of useful tools in Lean Six Sigma that we refer to –“beyond the basic and new tools of quality.” The objective of this chapter is to enable you to master these tools of quality and use these tools in detecting and solving quality problems in Six Sigma projects. You will find these tools to be extremely useful in different phases of Six Sigma. They are easy to learn and very useful in drawing meaningful conclusions from data. In this chapter, you will learn the concepts, various applications, and computer instructions for these quality tools of Six Sigma. This chapter will enable you to: 1. Learn the seven graphical tools ‐ considered the basic tools of quality. These are: (i) Process Maps (ii) Check sheets (iii) Histograms (iv) Scatter Diagrams (v) Run Charts/Control Charts (vi) Cause‐and‐Effect (Ishikawa)/Fishbone Diagrams (vii) Pareto Charts/Pareto Analysis 2. Construct the above charts using MINITAB 3. Apply these quality tools in Six Sigma projects 4. Learn the seven new tools of quality and their applications: (i) Affinity Diagram (ii) Interrelationship Digraph (iii) Tree Diagram (iv) Prioritizing Matrices (v) Matrix Diagram (vi) Process Decision Program Chart (vii) Activity Network Diagram 5.
    [Show full text]
  • Comparing Performances of Clements, Box-Cox, Johnson Methods with Weibull Distributions for Assessing Process Capability
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Senvar, Ozlem; Sennaroglu, Bahar Article Comparing performances of clements, Box-Cox, Johnson methods with Weibull distributions for assessing process capability Journal of Industrial Engineering and Management (JIEM) Provided in Cooperation with: The School of Industrial, Aerospace and Audiovisual Engineering of Terrassa (ESEIAAT), Universitat Politècnica de Catalunya (UPC) Suggested Citation: Senvar, Ozlem; Sennaroglu, Bahar (2016) : Comparing performances of clements, Box-Cox, Johnson methods with Weibull distributions for assessing process capability, Journal of Industrial Engineering and Management (JIEM), ISSN 2013-0953, OmniaScience, Barcelona, Vol. 9, Iss. 3, pp. 634-656, http://dx.doi.org/10.3926/jiem.1703 This Version is available at: http://hdl.handle.net/10419/188786 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte.
    [Show full text]
  • Case Study: Use of Six Sigma Methodology to Improve Quality and Reduce Turnaround Times in Processing of Credentialing Applications Session Code: WE04 Time: 8:30 A.M
    Case Study: Use of Six Sigma Methodology to Improve Quality and Reduce Turnaround Times in Processing of Credentialing Applications Session Code: WE04 Time: 8:30 a.m. – 10:00 a.m. Total CE Credits: 1.5 Presenter: Marianne Ambookan, RN, MBA and Jessica Goldbeck, MHA Case Study: Use of Six Sigma Methodology to Improve Quality and Reduce Turnaround Times in Processing Marianne Ambookan, RN, MBA Vice President, Medical Staff Services NSLIJ Health System Jessica Goldbeck, MHA Project Manager/Six Sigma Greenbelt NSLIJ Health System NSLIJ Health System • Nation’s 14th largest healthcare system, based on net patient revenue, and the largest in New York State. • Service area of 8 million people in the New York metropolitan area. • 19 hospitals (6,400+ hospital and long-term care beds) • 5 tertiary • 9 community • 3 specialty • 2 affiliates • 3 SNFs • 12,000 Medical and Allied Health Practitioners • 23,000 appointments. • Center for Learning and Innovation • Patient Safety Institute - The nation’s largest patient simulation center • North Shore-LIJ CareConnect Insurance Company, Inc. • $7.8 billion annual operating budget • 54,000 employees — the largest private employer in NYS 1 Medical Staff Office Overview Annual Statistics 17 Hospitals • 1750 Initial Applications Processed • 1550 Appointed • 3200 Hospital Appointments • 6000 Reappointment Applications Processed • 1150 Hospital Reappointments • 144 Credentialing Committees • 168 Medical Executive Committees/Medical Leadership Councils • 12 Board of Trustee Meetings • 324 Total Annual Meetings
    [Show full text]
  • Six Sigma in Urban Logistics Management—A Case Study
    sustainability Article Six Sigma in Urban Logistics Management—A Case Study Justyna Lemke , Kinga Kijewska , Stanisław Iwan * and Tomasz Dudek Faculty of Economics and Transport Engineering, Maritime University of Szczecin, ul. H. Poboznego˙ 11, 70-507 Szczecin, Poland; [email protected] (J.L.); [email protected] (K.K.); [email protected] (T.D.) * Correspondence: [email protected]; Tel.: +48-91-48-09-690 Abstract: A city as a system that constitutes one of the most important areas of human activities. The significant role to fulfill their expectations pay the goods transport and deliveries. These issues are the subject of urban logistics. In broad terms, urban logistics may be construed as a number of processes focused on freight flows, which are completed in cities, including deliveries, supply, goods transfer, services, etc. Due to the different urban logistics stakeholders’ expectations, these systems generate many challenges for managers, especially in the context of city users’ needs and their quality of life. Today, there is a lack of broadened approach and methodology to support them from the processes’ efficiency perspective. To fulfill this gap, the purpose of this paper is to apply the Six Sigma method as a support in last mile delivery management. Six Sigma method plays important role in production systems processes management. However, it could be useful in much wider perspective, including transport and logistics processes. The Authors emphasize that the Six Sigma method could be efficient approach in the last mile delivery processes’ analysis in the context of their efficiency. It helps positioning the customer satisfaction level and quantify the delivery processes defects, related to the undelivered goods.
    [Show full text]