December 15, 2009 14:39 WSPC/171-JAA 00364 Journal of Algebra and Its Applications Vol. 8, No. 6 (2009) 797–803 c World Scientific Publishing Company ∗-PRIME GROUP RINGS KANCHAN JOSHI∗,R.K.SHARMA† and J. B. SRIVASTAVA ‡ Department of Mathematics Indian Institute of Technology Delhi New Delhi, India ∗
[email protected] †
[email protected] ‡
[email protected] Received 20 January 2009 Accepted 17 March 2009 Communicated by M. Ferrero In this paper we characterize ∗-prime group rings. We prove that the group ring RG of the group G over the ring R is ∗-prime if and only if R is ∗-prime and Λ+(G) = (1). In the process we obtain more examples of group rings which are ∗-prime but not strongly prime. Keywords: Strongly prime; ∗-prime; prime; group rings. Mathematics Subject Classification 2000: 16S34, 16N60, 20C07 1. Introduction Let R be an associative ring with identity 1 =0and G be a group. It is well known [1] that the group ring RG of the group G over the ring R is prime if and only if R is prime and the FC subgroup ∆(G) is torsion free abelian or equivalently its torsion subgroup ∆+(G) = (1). AringR is said to be (right) strongly prime if for every 0 = r ∈ R,there exists a finite subset X of R such that rXt =0,t∈ R ⇒ t = 0. Left strongly prime rings are defined analogously. These were first studied by Handelman and Lawrence [2]. Clearly, strongly prime rings are prime. For group rings they proved that if RG is strongly prime then R is strongly prime and G has no non-trivial locally finite normal subgroup, that is, the locally finite radical L(G) = (1).