The Biology of Limonium Carolinianum (Walt.) Britt. (Plumbaginaceae) in Coastal Wetlands

Total Page:16

File Type:pdf, Size:1020Kb

The Biology of Limonium Carolinianum (Walt.) Britt. (Plumbaginaceae) in Coastal Wetlands International Biology Review The Biology of Limonium carolinianum (Walt.) Britt. (Plumbaginaceae) in Coastal Wetlands Richard Stalter*, Robert I. Lonard**, and Frank W. Judd** *Department of Biological ABSTRACT Sciences, St. John’s University, 8000 Utopia Limonium carolinianum (Walt.) Britt. is a New World humid Parkway, Queens, NY 11439 continental, temperate, subtropical, and tropical maritime taxon. It is a long-lived perennial that is found in wet sand **Department of Biology, and clay mineral soils. This species is a salt tolerant halophyte The University of Texas – Rio where salinity values approach 30 parts per thousand. Grande Valley, Edinburg, TX Reproduction is primarily vegetative. However, seed 78539 production is estimated at 1,000 to 10,000 per individual plant. Also known as sea lavender, it has been suggested as a Corresponding Author: species that can be used for re-vegetation efforts. Dr. Richard Stalter Inflorescences of this species are often harvested for dried ([email protected]) floral arrangements. Keywords: Sea lavender, morphology, habitats, communities, population ecology, physiological ecology, economic values. Copyright 2016 KEI Journals. All rights reserved 1 International Biology Review INTRODUCTION statice. The following taxonomic description has been derived from Correll and Correll The genus Limonium (Plumbaginaceae) 1972; Flora of North America Editorial includes about 300 to 350 species, and is Committee 2005; Hamilton 1997; Lehman primarily represented in maritime or in arid 2013; Luteyn 1976, 1990; and Radford et al. environments in the northern hemisphere 1968. (Correll and Correll 1972; Mabberley 1997). Eight species have been reported in North Limonium carolinianum has a woody taproot America including four species that have typical of dicots that extend up to 30.5 cm escaped from cultivation in California (Flora below the soil surface (R. Stalter, personal of North America Editorial Committee 2005; observation). Plants are long-lived Luteyn 1990). Limonium carolinianum perennials. Stems are acaulescent. Primary typically occurs in brackish marshes, salt leaves are in a basal rosette. Petioles are marshes, salt meadows, in irregularly glabrous, 2.5 to 15 cm long, and narrowly flooded tidal wetlands, and on barrier island winged at the base. Blades are 5 to 30 cm beaches (Duncan 1974; Stutzenbaker 1999). long and 0.5 to 7.5 cm wide, glabrous and It tolerates salinity conditions ranging from leathery, and are spatulate-elliptic, lance- freshwater to 30 parts per thousand(ppt) elliptic, oblanceolate, or obovate. The blade (Stalter 1968). Inflorescenes are often margins are entire. harvested for dried flower arrangements (Baltzer et al. 2002a; Baltzer et al., 2002b; The inflorescence is a diffuse panicle that Richardson and King 2011). Herein, we extends up to 90 cm above the basal rosette. summarize important aspects of this species. One to 3 flowers are borne on one side of the inflorescence axis, and are subtended by 1.0 TAXONOMY AND VARIATION papery, secund bracts. The bracts are 2 to 6 mm long. The funnel-form calyx consists of Limonium carolinianum (T. Walter) N. 5 united, pale white sepals, 4 to 6 mm long. Britton is a member of the family The calyx is persistent, dry, membranous, Plumbaginaceae P. Miller. The taxon was and glabrous, but pilose along the veins. The published under the name Statice caroliniana corolla consists of 5 slightly united petals Walt.in 1788. A partial list of synonyms or with elongated claws. The petals are rejected names includes Limonium lavender to purple or occasionally white, and angustatum (A. Gray) Small, L. carolini- are 1 to 2 mm longer than the calyx. Five anum var. angustatum (A. Gray) S.F. Blake, stamens are present, and the filaments are L. carolinianum var. compactum Shinners, L. adnate at the base of the corolla. The pistils carolinianum var. nashii (Small) B. Boivin, have 5 styles, and are free at the base (Figure L. carolinianum var. obtusilobum (S.F. 1). The fruit is a one-seeded, indehiscent Blake) H.E. Ahles, L. carolinianum var. utricle 3 to 7 mm long. Seeds are brown, trichogonum (S.F. Blake) B. Boivin, L. lustrous, reticulate, spindle-shaped, and 3 to nashii Small, L. nashii var. angustatum (A. 4 mm long. Gray) H.E. Ahles, L. obtusilobum S.F. Blake, L. trichogonum S.F. Blake (Flora of North The genus Limonium is characterized by America Editorial Committee 2005; Luteyn, having significant biodiversity, and is 1976). Common names include sea lavender, taxonomically complex (Cortinhas et al. Carolina sea lavender, marsh rosemary, 2015). Luteyn (1976) concluded that L. American thrift, marsh root, canker root, carolinianum is a complex of 6 to 7 taxa seaside thrift, lavender thrift, ink root, and formerly recognized as varieties or separate Copyright 2016 KEI Journals. All rights reserved 2 International Biology Review species. He noted that morphological (Duncan 1974; Hill1986; Radford et al. variation is almost continuous across the 1968; Richards et al. 2005; Stalter, 1974; geographical range of the taxon. Hamilton Stalter et al. 1999a, 1999b). (1997) reported that genetically isolated populations occur within 5 km of each other In Mississippi, sea lavender also occurs in on the coastline of Rhode Island. He brackish, saline, and hypersaline coastal sites recognized the role of isolation by distance (Eleuterius and McDaniel 1978). In Texas in influencing ecological variation. Sea coastal wetlands, it occurs on the margins of lavender has a chromosome number of 2n = mostly bare wind tidal flats, in irregularly 36 (Flora of North America Editorial flooded salt marshes, on beaches, in wet Committee 2005). depressions in the secondary dune topographic zone, and on the margins of 2.0 GEOGRAPHIC DISTRIBUTION and hurricane washover channels (Judd et al. RANGE of HABITATS 1977; Lehman 2013; Nelson et al. 2000). Limonium carolinianum is distributed from 2.1 SUBSTRATE CHARACTERISTICS about 47.5°N latitude in Newfoundland and and CLIMATIC REQUIREMENTS Labrador, Canada, to Florida, and from the Gulf coast of Florida to about 24.5°N in Limonium carolinianum is found in highly Tamaulipas, Mexico (Lehman, 2013; Luteyn, stressful physical environments in coastal 1976, 1990; Rachlin et al. 2012; Stalter wetlands. Substrate conditions include wet, 1994; Stalter et al. 1986, 1990). This species tidal-influenced, sandy and clay mineral soils is also reported from Bermuda (Luteyn that are deficient in organic material, and in 1976). nitrogen, phosphorus, and potassium (Drawe et al. 1981; Proffitt et al. 2005; Stutzenbaker Sea lavender typically occurs in regularly or 1999). In South Carolina tidal marshes, irregularly flooded saline habitats 1.4 to Stalter (1968) found that sites where L. 1.7m above mean sea level at Georgetown, carolinianum occurs are flooded for one South Carolina (Stalter 1968). It is primarily hour daily by spring tides. Under more xeric found in saturated soil conditions in brackish conditions in irregularly flooded sites on marshes, salt marshes, and on the margins of South Padre Island, Texas, the water table on salt pans or salt flats. It is rarely a dominant the margins of the wind-tidal flats is 13 to 15 species. In Rhode Island and New cm below the soil surface (Judd et al. 1977). Hampshire, L. carolinianum occurs in The pH typically ranges between 6.0 to 8.5, regularly inundated upper middle and high and the salinity ranges from 0 to 30 ppt on marsh habitats, in saturated depressions in North Padre Island, Texas, and in South the secondary dune complex, and Carolina in saline wetlands (Drawe et al. occasionally on rocky beaches (Dunlop and 1981; Stalter 1968). Soil temperatures can Crow 1985; Hacker and Bertness 1999). reach 52.8 °C in North Carolina sites (Oosting 1954). In the mid-Atlantic states of Virginia and Maryland to subtropical sites in Florida, L. This species occurs over broad climatic carolinianum occurs in similar habitats listed conditions ranging from a humid continental above, but it is also found in irregularly climate in Newfoundland and Labrador to a flooded higher elevations in the salt marsh, subtropical climate in Tamaulipas, Mexico. on the margins of tidal flats, and on the In the broad continuum of climatic zones for margins of hurricane washover channels this species, plants survive unfavorable Copyright 2016 KEI Journals. All rights reserved 3 International Biology Review temperatures by producing a basal rosette, and by having a perennial caudex. Cold Dunlop and Crow (1985) and Stalter and tolerance studies have not been conducted. Lamont, (1990, 2000, 2002) recognized plant communities associated with habitats; 2.2 PLANT COMMUNITIES namely tidal marshes and salt marshes. All communities are in saline and hypersaline Plant communities in saline coastal wetlands sites and are subject to periodic flooding. where sea lavender is present are referred to Table 1 includes common species associated by a variety of inconsistently used with L. carolinianum throughout its range. terminology. Most workers name plant communities according to topographic zones 3.0 PHYSIOLOGICAL ECOLOGY in which they occur or by listing a habitat. For example, Judd et al. (1977) associated Limonium carolinianum is a salt tolerant plant communities of South Padre Island, halophyte that occurs where salinity values Texas, with topographic facets including approach 30ppt (Stalter 1968). Little is backshore, primary dunes, secondary dunes known about the physiology of this species. and vegetated flats, and tidal flats. They also Anatomical features include highly identified washovers as a site for a plant developed aerenchyma tissue in the root community. Judd et al. (1977) reported L. system and petioles (Lehman 2013). carolinianum on the margins of washover Aerenchyma tissue aids in diffusion of channels and in the mostly barren wind tidal oxygen to tissues that are otherwise flats associated with Salicornia bigelovii, subjected to anaerobic conditions. Salt Sarcocornia utahensis = Salicornia virgini- glands are present on leaves and stems. ca, Blutaparon vermiculare, Sporobolus Aerosol salt spray and salt crystals are often tharpii, and Sesuvium portulacastrum. found on leaves and stems.
Recommended publications
  • Effects of Day Length on Flowering and Yield Production of Salicornia And
    Scientia Horticulturae 130 (2011) 510–516 Contents lists available at ScienceDirect Scientia Horticulturae journal homepage: www.elsevier.com/locate/scihorti Effects of day length on flowering and yield production of Salicornia and Sarcocornia species Yvonne Ventura a, Wegi A. Wuddineh a, Muki Shpigel b, Tzachi M. Samocha c, Brandon C. Klim c, Shabtai Cohen d, Zion Shemer d, Rui Santos e, Moshe Sagi a,∗ a The Jacob Blaustein Institutes for Desert Research, The Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University, PO Box 653, Beer Sheva 84105, Israel b National Center for Mariculture, Israel Oceanographic and Limnological Research, PO Box 1212, Eilat 88112, Israel c Texas Agricultural Experiment Station, Shrimp Mariculture Research Facility, 4301 Waldron Road, Corpus Christi, TX 78418, USA d Ramat Negev Desert Agro-Research Station, Halutza 85515, Israel e Centre for Marine Sciences (CCMAR), CIMAR-Laboratório Associado, FCMA, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal article info abstract Article history: Salicornia is a new vegetable crop that can be irrigated with highly saline water, even at salt concentrations Received 8 March 2011 equivalent to full-strength seawater. During leafy vegetable cultivation, the onset of the reproductive Received in revised form 24 June 2011 phase is an undesired phenomenon that reduces yield and quality and prevents year-round cultivation. Accepted 4 August 2011 Knowledge about the regulation of floral induction in the members of the tribe Salicornieae, however, is lacking. To establish year-round cultivation, we studied the flower induction of five Salicornia and two Keywords: Sarcocornia varieties. Plants were grown under two day lengths, 13.5 h and 18 h, and harvested by a repet- Biomass yield itive harvest regime.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Bulletin / New York State Museum
    Juncaceae (Rush Family) of New York State Steven E. Clemants New York Natural Heritage Program LIBRARY JUL 2 3 1990 NEW YORK BOTANICAL GARDEN Contributions to a Flora of New York State VII Richard S. Mitchell, Editor Bulletin No. 475 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 NEW YORK THE STATE OF LEARNING Digitized by the Internet Archive in 2017 with funding from IMLS LG-70-15-0138-15 https://archive.org/details/bulletinnewyorks4751 newy Juncaceae (Rush Family) of New York State Steven E. Clemants New York Natural Heritage Program Contributions to a Flora of New York State VII Richard S. Mitchell, Editor 1990 Bulletin No. 475 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I. A., LL.B Muttontown R. Carlos Carballada, Vice Chancellor , B.S Rochester Willard A. Genrich, LL.B Buffalo Emlyn 1. Griffith, A. B., J.D Rome Jorge L. Batista, B. A., J.D Bronx Laura Bradley Chodos, B.A., M.A Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D Bayside J. Edward Meyer, B.A., LL.B Chappaqua Floyd S. Linton, A.B., M.A., M.P.A Miller Place Mimi Levin Lieber, B.A., M.A Manhattan Shirley C. Brown, B.A., M.A., Ph.D Albany Norma Gluck, B.A., M.S.W Manhattan James W.
    [Show full text]
  • Plant Field Guide
    2 PICKLEWEED GLASSWORT CORDGRASS JAUMEA BATIS Field Guide 9 PICKLEWEED Amaranth Family 3 kinds, 2 examples CORDGRASS Grass Family 1 Pickleweed Sarcocornia pacifica Spartina foliosa Glasswort Arthrocnemum subterminalis 2 HABITAT: Growns in the low marsh where the HABITAT: Found throughout the salt marsh. roots are continually bathed in ocean water. APPEARANCE: Stems look like a chain of small APPEARANCE: Look for a tall grass which is pickles. higher than the other plants in the salt marsh. REPRODUCTION: The flowers of all pickleweeds REPRODUCTION: All grasses are wind pollinated. are pollinated by the wind. The small flowers are Look for straw colored spikes of densely packed hard to see because they have no colorful petals flowers. Male flowers will have pollen and the female flowers will show graceful waving stigmas to ADAPTATION TO SALT: Pickleweeds are some of catch the pollen. the many marsh plants that use salt storage (they are accumulators). Also called succulents, these ADAPTATION TO SALT: All the salt marsh plants are swollen with the stored salty water. grasses are salt excreters using special pores to When the salt concentration becomes too high the push out droplets of salty water. Look on the grass cells will die. blades for salt crystals. See sea lavender. ECOLOGICAL RELATIONSHIPS: Frequently the ECOLOGICAL RELATIONSHIPS: Home for the most common plants in the marsh, they provide endangered bird, the Light-footed Clapper Rail. shelter and food for invertebrates. Belding’s A spider lives its whole life inside the blades. Savannah Sparrows build their nests in the Important food for grazing animals. glasswort. BATIS or SALTWORT Saltwort Family Batis maritima HABITAT: Most frequently found in the low marsh.
    [Show full text]
  • Salt Marsh Plants of Long Island Sound R
    Connecticut College Digital Commons @ Connecticut College Bulletins Connecticut College Arboretum 2015 Bulletin No. 40: Salt Marsh Plants of Long Island Sound R. Scott aW rren Juliana Barrett Margaret Van Patten Follow this and additional works at: http://digitalcommons.conncoll.edu/arbbulletins Part of the Botany Commons, Environmental Studies Commons, and the Natural Resources and Conservation Commons Recommended Citation Warren, R. Scott; Barrett, Juliana; and Van Patten, Margaret, "Bulletin No. 40: Salt Marsh Plants of Long Island Sound" (2015). Bulletins. Paper 39. http://digitalcommons.conncoll.edu/arbbulletins/39 This Article is brought to you for free and open access by the Connecticut College Arboretum at Digital Commons @ Connecticut College. It has been accepted for inclusion in Bulletins by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. SALT MARSH PLANTS of Long Island Sound revised second edition To order additional copies of this publicaton, please contact: Connecticut Sea Grant 1080 Shennecossett Road Groron, CT 06340-6048 Tel. 860-405-9128 http://seagrant. ucon n.edu or Can necticut College Arboretum Box 5201 270 Mohegan Avenue New London, CT 06320 Tel. 860-439-5020 http://www. can ncoll.edul the-arboreeu m Long • -Island Sound SmGifutt Study Connecticut O ©20 15 Connecticut Sea Grant and Connecticut College Arboretum First edition published in 2009 CTSG-15·14 Salt Marsh Plants of Long Island Sound by R. Scott Warren, Juliana Barrett, and Margaret S. Van Patten Second edition Revised 2015 , Salt Marsh Plants of Long Island Sound Long .
    [Show full text]
  • Structure, Biology and Chemistry of Plumbago Auriculata (Plumbaginaceae)
    Structure, Biology and Chemistry of Plumbago auriculata (Plumbaginaceae) By Karishma Singh A dissertation submitted in partial fulfillment of the academic requirements for the degree of Doctor of Philosophy in Biolgical Sciences School of Life Sciences College of Agriculture, Engineering and Science University of Kwa-Zulu Natal Westville Durban South Africa 30 November 2017 i DEDICATION To my daughter Ardraya Naidoo, she has given me the strength and encouragement to excel and be a positive role model for her. “Laying Down the Footsteps She Can Be Proud To Follow” ii ABSTRACT Plumbago auriculata Lam. is endemic to South Africa and is often cultivated for its ornamental and medicinal uses throughout the world. Belonging to the family Plumbaginaceae this species contains specialized secretory structures on the leaves and calyces. This study focused on the micromorphological, chemical and biological aspects of the species. Micromorphological studies revealed the presence of salt glands on the adaxial and abaxial surface of leaves and two types of trichomes on the calyces. “Transefer cells” were reported for the first time in the genus. The secretory process of the salt glands was further enhanced by the presence of mitochondria, ribosomes, vacuoles, dictyosomes and rough endoplasmic reticulum cisternae. Histochemical and phytochemical studies revealed the presence of important secondary metabolites that possess many medicinal properties which were further analyzed by Gas chromatography-mass spectrometry (GC-MC) identifying the composition of compounds in the leaf and calyx extracts. A novel attempt at synthesizing silver nanoparticles proved leaf and calyx extracts to be efficient reducing and capping agents that further displayed good antibacterial activity against gram- positive and gram-negative bacteria.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • A Guide on Common, Herbaceous, Hydrophytic Vegetation of Southern Texas
    United States Department of Agriculture Natural Resources Conservation Service Technical Note No: TX-PM-20-02 July 2020 A Guide on Common, Herbaceous, Hydrophytic Vegetation of Southern Texas Plant Materials Technical Note Horsetail Background: Wetlands are those lands that have saturated soils, shallow standing water or flooding during at least a portion of the growing season. These sites have soils that are saturated for at least two consecutive weeks during the growing season and support a distinct vegetation type adapted for life in saturated soil conditions. Purpose: The purpose of this Technical Note is to provide information on the use of some common wetland plants of southern Texas. The list includes plants found along the Guadalupe River around Tivoli southward to the Rio Grande River floodplain. It is not intended to be a comprehensive treatment of the wetland flora of this region. Rather it is intended to introduce to the reader the many common wetland plant species that occur in south Texas. The guide is broken down into four categories: wildlife habitat, shoreline erosion control, water quality improvement and landscaping. Each species has a brief description of its identifying features, notes on its ecology or habitat, use and its National Wetlands Inventory (NWI) assessment. For more detailed information we suggest referring to our listed references. All pictures came from the USDA Plants Data Base or the E. “Kika” de la Garza Plant Materials Center. Plants for wildlife habitat: The plants listed in this section are primarily for waterbird and waterfowl habitat as well as for fish nursery and spawning areas.
    [Show full text]
  • Ceratostigma
    Ceratostigma Ceratostigma (/ˌsɛrətoʊˈstɪɡmə, sɪˌræ-/), or leadwort, plumbago, is a genus of eight species of flowering plants in the family Plumbaginaceae, native to warm temperate to tropical regions of Africa and Asia. Common names are shared with the genus Plumbago. They are flowering herbaceous plants, subshrubs, or small shrubs growing to 0.3–1 m (0.98– 3.28 ft) tall. The leaves are spirally arranged, simple, 1–9 cm long, usually with a hairy margin. Some of the species are evergreen, others deciduous. The flowers are produced in a compact inflorescence, each flower with a five-lobed corolla; flower colour varies from pale to dark blue to red-purple. The fruit is a small bristly capsule containing a single seed. Selected species Ceratostigma plumbaginoides (Bunge) Ceratostigma willmottianum Stapf Cultivation and uses Plants of this genus are valued in the garden for their late summer flower colour and their autumn leaf colour. The following varieties have gained the Royal Horticultural Society's Award of Garden Merit (confirmed 2017): Ceratostigma has been listed as one of the 38 plants that are used to prepare Bach flower remedies, a kind of alternative medicine promoted for its effect on mental and emotional health. Ceratostigma plumbaginoides, commonly called plumbago or leadwort, is a wiry, mat-forming perennial which spreads by rhizomes to form an attractive ground cover. Typically grows 6-10" tall on generally erect stems rising from the rhizomes. Oval to obovate, shiny, medium green leaves (to 2" long) turn bronze-red in autumn. Terminal clusters of 5-petaled, gentian blue flowers (1/2 to 3/4" diameter) appear above the foliage over a long summer to frost bloom period.
    [Show full text]
  • Chenopodiaceae)
    Ann. Bot. Fennici 45: 241–254 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 29 August 2008 © Finnish Zoological and Botanical Publishing Board 2008 Taxonomic and nomenclatural notes on South American taxa of Sarcocornia (Chenopodiaceae) M. Ángeles Alonso & Manuel B. Crespo* CIBIO, Instituto de la Biodiversidad, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain (*corresponding author’s e-mail: [email protected]) Received 3 Apr. 2007, revised version received 31 May 2007, accepted 8 June 2007 Alonso, M. Á. & Crespo, M. B. 2008: Taxonomic and nomenclatural notes on South American taxa of Sarcocornia (Chenopodiaceae). — Ann. Bot. Fennici 45: 241–254. Five South American species of Sarcocornia (Chenopodiaceae) are accepted, four of which are new combinations in that genus: S. ambigua (Michx.) M.A. Alonso & M.B. Crespo, S. andina (Phil.) Freitag, M.A. Alonso & M.B. Crespo, S. magellanica (Phil.) M.A. Alonso & M.B. Crespo, and S. neei (Lag.) M.A. Alonso & M.B. Crespo. Synonyms and types are cited for the accepted taxa, and three lectotypes, an epitype and a neotype are designated to establish a correct usage of the names. Main diagnostic characters, ecological features and distributions are also reported for each taxon, and a key is provided to facilitate identification. Key words: Chenopodiaceae, nomenclature, Salicornioideae, Sarcocornia, taxonomy Introduction the world (except in eastern Asia), though a few are restricted to arid continental areas where they Sarcocornia (subfamily Salicornioideae, occur on the shores of salt lakes and marshes, and Chenopodiaceae) includes erect to prostrate even in basins between high mountain ranges (cf. dwarf shrubs, sometimes creeping and rooting at Kadereit et al.
    [Show full text]
  • Herbaceous Tidal Wetland Communities of Maryland's
    HERBACEOUS TIDAL WETLAND COMMUNITIES OF MARYLAND’S EASTERN SHORE 30 June 2001 HERBACEOUS TIDAL WETLAND COMMUNITIES OF MARYLAND’S EASTERN SHORE: Identification, Assessment and Monitoring Report Submitted To: The United States Environmental Protection Agency Clean Water Act 1998 State Wetlands Protection Development Grant Program Report Submitted By: Jason W. Harrison for The Biodiversity Program Maryland Department of Natural Resources Wildlife and Heritage Division 30 June 2001 [U.S. EPA Reference Wetland Natural Communities of Maryland’s Herbaceous Tidal Wetlands Grant # CD993724] Maryland Herbaceous Tidal Wetlands Vegetation Classification / Description and Reference Sites FINAL REPORT TABLE OF CONTENTS Acknowledgements.....................................................................................................................3 Introduction.................................................................................................................................5 Purpose .......................................................................................................................................8 Methods ......................................................................................................................................9 Landscape Analysis .........................................................................................................9 Spatial Distribution of Vegetation: Implications for Sampling Design..............................9 Field Surveys.................................................................................................................10
    [Show full text]
  • Henderson, L. (2007). Invasive, Naturalized and Casual Alien Plants in Southern Africa
    Bothalia 37,2: 215–248 (2007) Invasive, naturalized and casual alien plants in southern Africa: a sum- mary based on the Southern African Plant Invaders Atlas (SAPIA) L. HENDERSON* Keywords: biomes, casual alien plants, invasive plants, Lesotho, naturalized plants, roadside surveys, SAPIA mapping project, South Africa, Swaziland ABSTRACT The primary objective of this publication is to provide an overview of the species identity, invasion status, geographical extent, and abundance of alien plants in South Africa, Swaziland and Lesotho, based on fi eld records from 1979 to the end of 2000. The dataset is all the species records for the study area in the Southern African Plant Invaders Atlas (SAPIA) database during this time period. A total of 548 naturalized and casual alien plant species were catalogued and invasion was recorded almost throughout the study area. Most invasion, in terms of both species numbers and total species abundance, was recorded along the southern, southwestern and eastern coastal belts and in the adjacent interior. This area includes the whole of the Fynbos and Forest Biomes, and the moister eastern parts of the Grassland and Savanna Biomes. This study reinforces previous studies that the Fynbos Biome is the most extensively invaded vegetation type in South Africa but it also shows that parts of Savanna and Grassland are as heavily invaded as parts of the Fynbos. The Fabaceae is prominent in all biomes and Acacia with 17 listed species, accounts for a very large proportion of all invasion. Acacia mearnsii was by far the most prominent invasive species in the study area, followed by A.
    [Show full text]