Composite Low Affinity Interactions Dictate Recognition of the Cyclin-Dependent Kinase Inhibitor Sic1 by the Scfcdc4 Ubiquitin Ligase
Composite low affinity interactions dictate recognition of the cyclin-dependent kinase inhibitor Sic1 by the SCFCdc4 ubiquitin ligase Xiaojing Tanga, Stephen Orlickya, Tanja Mittagb,1, Veronika Csizmokb, Tony Pawsona,c, Julie D. Forman-Kayb,d,2, Frank Sicheria,c,d,2, and Mike Tyersa,e,2 aCenter for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, ON, Canada M5G 1X5; bProgram in Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8; cDepartment of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; dDepartment of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; and eInstitute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada H3C 3J7 Edited by* Angelika Amon, Massachusetts Institute of Technology, Cambridge, MA, and approved November 21, 2011 (received for review October 7, 2011) The ubiquitin ligase SCFCdc4 (Skp1/Cul1/F-box protein) recognizes diversity may facilitate ubiquitination at multiple sites (18) and/ its substrate, the cyclin-dependent kinase inhibitor Sic1, in a multi- or enable long-range electrostatic interactions with the positively site phosphorylation-dependent manner. Although short dipho- charged binding pocket on Cdc4 (7). sphorylated peptides derived from Sic1 can bind to Cdc4 with The human Cdc4 ortholog, called Fbw7, targets phosphory- high affinity, through systematic mutagenesis and quantitative lated forms of cyclin E, Myc, Jun, Notch, SREBP, and other pro- biophysical analysis we show that individually weak, dispersed teins (19). The phosphodegron described for Fbw7 is similar to Sic1 phospho sites engage Cdc4 in a dynamic equilibrium. The that of Cdc4, except that an additional phosphorylated residue is affinities of individual phosphoepitopes serve to tune the overall preferred at the P þ 4 position with respect to the primary (P0) phosphorylation site threshold needed for efficient recognition.
[Show full text]