Myosin Light Chain Kinase Mediates Transcellular Intravasation of Breast Cancer Cells Through the Underlying Endothelial Cells: a Three-Dimensional FRET Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
And MMP-Mediated Cell–Matrix Interactions in the Tumor Microenvironment
International Journal of Molecular Sciences Review Hold on or Cut? Integrin- and MMP-Mediated Cell–Matrix Interactions in the Tumor Microenvironment Stephan Niland and Johannes A. Eble * Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; [email protected] * Correspondence: [email protected] Abstract: The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs. Keywords: tumor microenvironment; extracellular matrix; integrins; matrix metalloproteinases; matrikines Citation: Niland, S.; Eble, J.A. Hold on or Cut? Integrin- and MMP-Mediated Cell–Matrix 1. Introduction Interactions in the Tumor Microenvironment. -
Metadherin Functions As a Laminin Receptor That Is Essential for Metastasis and Is Associated with Poor Survival in Osteosarcoma
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2014 METADHERIN FUNCTIONS AS A LAMININ RECEPTOR THAT IS ESSENTIAL FOR METASTASIS AND IS ASSOCIATED WITH POOR SURVIVAL IN OSTEOSARCOMA Limin Zhu Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cancer Biology Commons Recommended Citation Zhu, Limin, "METADHERIN FUNCTIONS AS A LAMININ RECEPTOR THAT IS ESSENTIAL FOR METASTASIS AND IS ASSOCIATED WITH POOR SURVIVAL IN OSTEOSARCOMA" (2014). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 448. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/448 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. METADHERIN FUNCTIONS AS A LAMININ RECEPTOR THAT IS ESSENTIAL FOR METASTASIS AND IS ASSOCIATED WITH POOR SURVIVAL IN OSTEOSARCOMA -
Regulation of NMDA Receptor Activity by F-Actin and Myosin Light Chain Kinase
The Journal of Neuroscience, November 1, 2001, 21(21):8464–8472 Regulation of NMDA Receptor Activity by F-Actin and Myosin Light Chain Kinase Saobo Lei,1 Elzbieta Czerwinska,1 Waldemar Czerwinski,1 Michael P. Walsh,2 and John F. MacDonald1 1Canadian Institutes of Health Research Group “The Synapse,” Departments of Physiology and Pharmacology, University of Toronto, Toronto M5S 1A8, Canada, and 2Canadian Institutes of Health Research Group in Regulation of Vascular Contractility and The Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada The postsynaptic density (PSD) at excitatory dendritic syn- This MLCK-dependent regulation was observed in cell- apses comprises a protein complex of glutamate receptors, attached patches but was lost after excision to inside-out scaffolding elements, and signaling enzymes. For example, patches. Furthermore, the enhancement induced by constitu- NMDA receptors (NMDARs) are linked to several proteins in the tively active MLCK and the depression of MLCK inhibitors were PSD, such as PSD-95, and are also tethered via binding pro- eliminated after depolymerization of the cytoskeleton. NMDARs teins such as ␣-actinin directly to filamentous actin of the and MLCK did not colocalize in clusters on the dendrites of cytoskeleton. Depolymerization of the cytoskeleton modulates cultured hippocampal neurons, further indicating that the ef- the activity of NMDARs, and, in turn, strong activation of fects of MLCK are mediated indirectly via actomyosin. Our NMDARs can trigger depolymerization of actin. Myosin, the results suggest that MLCK enhances actomyosin contractility motor protein of muscular contraction and nonmuscle motility, to either increase the membrane tension on NMDARs or to alter is also associated with NMDARs and the PSD. -
The Urokinase Receptor: a Multifunctional Receptor in Cancer Cell Biology
International Journal of Molecular Sciences Review The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications Anna Li Santi 1,†, Filomena Napolitano 2,†, Nunzia Montuori 2 and Pia Ragno 1,* 1 Department of Chemistry and Biology, University of Salerno, Fisciano, 84084 Salerno, Italy; [email protected] 2 Department of Translational Medical Sciences, “Federico II” University, 80135 Naples, Italy; fi[email protected] (F.N.); [email protected] (N.M.) * Correspondence: [email protected] † Equal contribution. Abstract: Proteolysis is a key event in several biological processes; proteolysis must be tightly con- trolled because its improper activation leads to dramatic consequences. Deregulation of proteolytic activity characterizes many pathological conditions, including cancer. The plasminogen activation (PA) system plays a key role in cancer; it includes the serine-protease urokinase-type plasminogen activator (uPA). uPA binds to a specific cellular receptor (uPAR), which concentrates proteolytic activity at the cell surface, thus supporting cell migration. However, a large body of evidence clearly showed uPAR involvement in the biology of cancer cell independently of the proteolytic activity of its ligand. In this review we will first describe this multifunctional molecule and then we will discuss how uPAR can sustain most of cancer hallmarks, which represent the biological capabilities acquired during the multistep cancer development. Finally, we will illustrate the main data available in the literature on uPAR as a cancer biomarker and a molecular target in anti-cancer therapy. Citation: Li Santi, A.; Napolitano, F.; Montuori, N.; Ragno, P. The Keywords: urokinase receptor; uPAR; cancer hallmarks Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. -
Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function
cells Review Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function Cláudia Brito 1,2 and Sandra Sousa 1,* 1 Group of Cell Biology of Bacterial Infections, i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, 4200-135 Porto, Portugal; [email protected] 2 Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-002 Porto, Portugal * Correspondence: [email protected] Received: 19 May 2020; Accepted: 29 June 2020; Published: 1 July 2020 Abstract: Non-muscle myosin 2A (NM2A) is a motor cytoskeletal enzyme with crucial importance from the early stages of development until adulthood. Due to its capacity to convert chemical energy into force, NM2A powers the contraction of the actomyosin cytoskeleton, required for proper cell division, adhesion and migration, among other cellular functions. Although NM2A has been extensively studied, new findings revealed that a lot remains to be discovered concerning its spatiotemporal regulation in the intracellular environment. In recent years, new functions were attributed to NM2A and its activity was associated to a plethora of illnesses, including neurological disorders and infectious diseases. Here, we provide a concise overview on the current knowledge regarding the structure, the function and the regulation of NM2A. In addition, we recapitulate NM2A-associated diseases and discuss its potential as a therapeutic target. Keywords: non-muscle myosin 2A (NM2A); NM2A activity regulation; NM2A filament assembly; actomyosin cytoskeleton; cell migration; cell adhesion; plasma membrane blebbing 1. Superfamily of Myosins The cell cytoskeleton is an interconnected and dynamic network of filaments essential for intracellular organization and cell shape maintenance. -
Human Platelet Myosin Light Chain Kinase Requires the Calcium
Proc. Nati. Acad. Sci. USA Vol. 76, No. 4, pp. 1653-1657, April 1979 Biochemistry Human platelet myosin light chain kinase requires the calcium- binding protein calmodulin for activity (calcium-dependent regulator/phosphorylation of nonmuscle contractile protein/affinity chromatography) DAVID R. HATHAWAY AND ROBERT S. ADELSTEIN Section on Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20014 Communicated by DeWitt Stetten, Jr., January 17, 1979 ABSTRACT In an actomyosin fraction isolated from human Furthermore, this calcium-binding protein has been shown to platelets, phosphorylation of the 20,000-dalton light chain of be identical to the calcium-dependent regulator* of cyclic AMP myosin is stimulated by calcium and the calcium-binding pro- phosphodiesterase (11). tein calmodulin. The enzyme catalyzing this phosphorylation has been isolated by using calmodulin-affinity chromatography. Although a growing body of evidence suggests that non- Platelet myosin light chain kinase activity was monitored muscle myosin, such as that isolated from platelets, is regulated throughout the isolation procedures by using the 20,000-dalton by light chain phosphorylation, the nature or existence of cal- smooth muscle myosin light chain purified from turkey gizzards cium control mechanisms has not been clarified. In an earlier as substrate. The partially purified myosin kinase requires both study, platelet myosin kinase was found to be active in the ab- calcium and calmodulin for activity and has a specific activity sence of calcium (12). Recently, we isolated, from human of 3.1 ,gmol of phosphate transferred to the 20,000-dalton light platelets, an actomyosin in which chain per mg of kinase per min under optimal assay conditions. -
The Basics of Epithelial-Mesenchymal Transition
Amendment history: Corrigendum (May 2010) The basics of epithelial-mesenchymal transition Raghu Kalluri, Robert A. Weinberg J Clin Invest. 2009;119(6):1420-1428. https://doi.org/10.1172/JCI39104. Review Series The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial- mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions. Find the latest version: https://jci.me/39104/pdf Review series The basics of epithelial-mesenchymal transition Raghu Kalluri1,2 and Robert A. Weinberg3 1Division of Matrix Biology, Beth Israel Deaconess Medical Center, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. 2Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts, USA. 3Whitehead Institute for Biomedical Research, Ludwig Center for Molecular Oncology, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibro- sis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithe- lial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropri- ated and subverted by chronically inflamed tissues and neoplasias. -
Of Epigenetic Modulation by Valproic Acid in Traumatic Brain Injury – What We
TITLE PAGE Title: The ‘Omics’ of Epigenetic Modulation by Valproic Acid in Traumatic Brain Injury – What We Know and What the Future Holds Short title: The ‘Omics’ of Valproic Acid treatment for TBI Authors: Umar F. Bhatti, MD; Aaron M. Williams, MD; Patrick E. Georgoff, MD; Hasan B. Alam, MD Affiliations: Department of Surgery, University of Michigan, Ann Arbor, MI, USA. Address for correspondence: Hasan B. Alam, MD Norman Thompson Professor of Surgery, and Head of General Surgery University of Michigan Hospital 2920 Taubman Center/5331 University of Michigan Hospital 1500 E. Medical Center Drive This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/prca.201900068. This article is protected by copyright. All rights reserved. Ann Arbor, MI 48109-5331 [email protected] Abbreviations: VPA = Valproic acid HAT = Histone Acetylase HDAC = Histone Deacetylase TBI = Traumatic Brain Injury HS = Hemorrhagic Shock PBMC = Peripheral Blood Mononuclear Cells NEFL = Neurofilament Light ELISA = Enzyme-linked Immunosorbent Assay PCR = Polymerase Chain Reaction LINCS = Library of Integrated Network-based Cellular Signatures Keywords: epigenetic modulation, valproic acid, omics, traumatic brain injury, clinical trial No. of words: 2485 words This article is protected by copyright. All rights reserved. ABSTRACT Traumatic brain injury is a heterogeneous injury that is a major cause of morbidity and mortality worldwide. Epigenetic modulation via acetylation by valproic acid has shown promise as an effective pharmacological treatment for TBI; however, the mechanisms by which it improves clinical outcomes are not well-described. -
Vein Endothelial Cell Monolayer Neutrophil Migration Across Human
Endothelial Myosin Light Chain Kinase Regulates Neutrophil Migration Across Human Umbilical Vein Endothelial Cell Monolayer This information is current as Hajime Saito, Yoshihiro Minamiya, Michihiko Kitamura, Satoshi of October 2, 2021. Saito, Katsuhiko Enomoto, Kunihiko Terada and Jun-ichi Ogawa J Immunol 1998; 161:1533-1540; ; http://www.jimmunol.org/content/161/3/1533 Downloaded from References This article cites 45 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/161/3/1533.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Endothelial Myosin Light Chain Kinase Regulates Neutrophil Migration Across Human Umbilical Vein Endothelial Cell Monolayer1 Hajime Saito,* Yoshihiro Minamiya,2* Michihiko Kitamura,* Satoshi Saito,* Katsuhiko Enomoto,† Kunihiko Terada,‡ and Jun-ichi Ogawa* Although extravasation of neutrophils is a critical step in acute inflammation, the role of the endothelial cytoskeleton in neutrophil transmigration has not been fully investigated. -
Myosin Light Chain Kinase Binding to a Unique Site on F-Actin Revealed by Three-Dimensional Image Reconstruction
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central JCBArticle Myosin light chain kinase binding to a unique site on F-actin revealed by three-dimensional image reconstruction Victoria Hatch,1 Gang Zhi,2 Lula Smith,2 James T. Stull,2 Roger Craig,3 and William Lehman1 1Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 2Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 3Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA a2ϩ–calmodulin-dependent phosphorylation of my- F-actin rafts, and single filaments within rafts were used for osin regulatory light chains by the catalytic COOH- structural analysis. Three-dimensional reconstructions showed C terminal half of myosin light chain kinase (MLCK) MLCK density on the extreme periphery of subdomain-1 of activates myosin II in smooth and nonmuscle cells. In addi- each actin monomer forming a bridge to the periphery of tion, MLCK binds to thin filaments in situ and F-actin in subdomain-4 of the azimuthally adjacent actin. Fitting the vitro via a specific repeat motif in its NH2 terminus at a reconstruction to the atomic model of F-actin revealed inter- stoichiometry of one MLCK per three actin monomers. action of MLCK-147 close to the COOH terminus of the first We have investigated the structural basis of MLCK–actin actin and near residues 228–232 of the second. This interactions by negative staining and helical reconstruc- unique location enables MLCK to bind to actin without tion. -
Actin-Related Protein2/3 Complex Regulates Tight Junctions and Terminal Differentiation to Promote Epidermal Barrier Formation
Actin-related protein2/3 complex regulates tight junctions and terminal differentiation to promote epidermal barrier formation Kang Zhoua,1, Andrew Muroyamaa,1, Julie Underwooda, Rebecca Leyleka, Samriddha Raya, Scott H. Soderlinga,b, and Terry Lechlera,c,2 Departments of aCell Biology, bNeurobiology, and cDermatology, Duke University Medical Center, Durham, NC 27710 Edited by Joan S. Brugge, Harvard Medical School, Boston, MA, and approved August 19, 2013 (received for review May 3, 2013) The epidermis provides an essential seal from the external gastrulation in Caenorhabditis elegans embryos(11,12).In environment and retains fluids within the body. To form an Drosophila, the Arp2/3 complex plays roles in myoblast fusion, effective barrier, cells in the epidermis must form tight junctions ring canal expansion, adherens junction formation, Notch sig- and terminally differentiate into cornified envelopes. Here, we naling, and bristle development (6, 13, 14). demonstrate that the branched actin nucleator, the actin-related The functions of the Arp2/3 complex in intact tissues during protein (Arp)2/3 complex, is unexpectedly required for both these mammalian development and homeostasis have only begun to be activities. Loss of the ArpC3 subunit of the Arp2/3 complex addressed. Loss of the Arp2/3 complex globally results in early resulted in minimal changes in the morphogenesis and architec- lethality at the blastocyst stage in mice (15). In the mouse oocyte, ture of this stratified squamous epithelium, but resulted in the Arp2/3 complex is required for asymmetric cell division profound defects in its physiology. Mutant embryos did not through positioning of the mitotic spindle (16). -
Dentinogenic Effects of Extracted Dentin Matrix Components Digested with Matrix Metalloproteinases
www.nature.com/scientificreports There are amendments to this paper OPEN Dentinogenic efects of extracted dentin matrix components digested with matrix metalloproteinases Received: 10 April 2017 Motoki Okamoto1, Yusuke Takahashi1, Shungo Komichi1, Paul R. Cooper2 & Mikako Hayashi1 Accepted: 5 July 2018 Dentin is primarily composed of hydroxyapatite crystals within a rich organic matrix. The organic Published: xx xx xxxx matrix comprises collagenous structural components, within which a variety of bioactive molecules are sequestered. During caries progression, dentin is degraded by acids and enzymes derived from various sources, which can release bioactive molecules with potential reparative activity towards the dentin-pulp complex. While these molecules’ repair activities in other tissues are already known, their biological efects are unclear in relation to degradation events during disease in the dentin-pulp complex. This study was undertaken to investigate the efects of dentin matrix components (DMCs) that are partially digested by matrix metalloproteinases (MMPs) in vitro and in vivo during wound healing of the dentin-pulp complex. DMCs were initially isolated from healthy dentin and treated with recombinant MMPs. Subsequently, their efects on the behaviour of primary pulp cells were investigated in vitro and in vivo. Digested DMCs modulated a range of pulp cell functions in vitro. In addition, DMCs partially digested with MMP-20 stimulated tertiary dentin formation in vivo, which exhibited a more regular tubular structure than that induced by treatment with other MMPs. Our results indicate that MMP-20 may be especially efective in stimulating wound healing of the dentin-pulp complex. When a tooth is damaged by caries and/or fracture, underlying pulp tissue can become exposed.