Autoregressive Models for Sequences of Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Autoregressive Models for Sequences of Graphs Autoregressive Models for Sequences of Graphs Daniele Zambon∗ Daniele Grattarola∗ Universita` della Svizzera italiana, Lugano, Switzerland Universita` della Svizzera italiana, Lugano, Switzerland [email protected] [email protected] Lorenzo Livi Cesare Alippi University of Manitoba, Winnipeg, Canada Universita` della Svizzera italiana, Lugano, Switzerland University of Exeter, Exeter, United Kingdom Politecnico di Milano, Milano, Italy Abstract—This paper proposes an autoregressive (AR) model where the expectation E[·] is with respect to noise at time for sequences of graphs, which generalises traditional AR models. t + 1. The predictor from (2) is optimal when considering the A first novelty consists in formalising the AR model for a very L2-norm loss between x^ and x . general family of graphs, characterised by a variable topology, t+1 t+1 and attributes associated with nodes and edges. A graph neural Predicting the temporal evolution of a multivariate stochas- network (GNN) is also proposed to learn the AR function associ- tic process is a widely explored problem in system identifi- ated with the graph-generating process (GGP), and subsequently cation and machine learning. However, several recent works predict the next graph in a sequence. The proposed method is have focused on problems where the vector representation of compared with four baselines on synthetic GGPs, denoting a a system can be augmented by also considering the relations significantly better performance on all considered problems. Index Terms—graph, structured data, stochastic process, re- existing among variables [1], ending up with a structured current neural network, graph neural network, autoregressive representation that can be naturally described by a graph. model, prediction. Such structured information provides an important inductive bias that the learning algorithms can take advantage of. For I. INTRODUCTION instance, it is difficult to predict the chemical properties of a molecule by only looking at its atoms; on the other hand, Several physical systems can be described by means of by explicitly representing the chemical bonds, the description autoregressive (AR) models and their variants. In that case, of the molecule becomes more complete, and the learning a system is represented as a discrete-time signal in which, at algorithm can take advantage of that information. Similarly, every time step, the observation is modelled as a realisation of several other machine learning problems benefit from a graph- a random variable that depends on preceding observations. In based representation, e.g., the understanding of visual scenes this paper, we consider the problem of designing AR predictive [2], the modelling of interactions in physical and multi-agent models where the observed entity is a graph. systems [3], [4], or the prediction of traffic flow [5]. In all In the traditional setting for AR predictive models, each these problems (and many others [1]), the dependencies among observation generated by the process is modelled as a vector, variables provide a strong prior that has been successfully x 2 d intended as a realisation of random variable t+1 R , so leveraged to significantly surpass the previous state of the art. that 8 In this paper, we consider attributed graphs where each node x = f(x ; x ; : : : ; x ) + , <> t+1 t t−1 t−p+1 and edge can be associated with a feature vector. As such, a E[] = 0; (1) graph with N nodes can be seen as a tuple (V; E), where > 2 :Var[] = σ < 1: F V = fvi 2 R gi=1;:::;N arXiv:1903.07299v1 [cs.LG] 18 Mar 2019 In other terms, each observation xt+1 is obtained from the represents the set of nodes with F -dimensional attributes, and regressor S p E = feij 2 gv ;v 2V xt = [xt; xt−1; : : : ; xt−p+1] R i j models the set of S-dimensional edge attributes [6]. By this through an AR function f(·) of order p affected by an additive formulation also categorical attributes can be represented, via stationary random noise . Given (1), the prediction of x t+1 vector encoding. We denote with G the set of all possible is often taken as graphs with vector attributes. Graphs in G can have differ- x^t+1 = E[xt+1] = f(xt; xt−1; : : : ; xt−p+1); (2) ent order and topology, as well as variable node and edge attributes. Moreover, a correspondence among the nodes of This research is funded by the Swiss National Science Foundation project different graphs might not be present, or can be unknown; in 200021 172671. We gratefully acknowledge partial support of the Canada this case, we say that the nodes are non-identified. Research Chairs program. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. Here we build on the classic AR model (1) operating on ∗Equal contribution. discrete-time signals, and propose a generalised formulation that allows us to consider sequences of generic attributed the numerical case, we model each observation of the process graphs. The formulation is thus adapted by modelling a as a realisation of a random variable gt+1 2 G, dependent on graph-generating process (GGP) that produces a sequence a graph-valued regressor fg ; g ; : : : ; g ;::: g of graphs in G, where each graph g 1 2 t t+1 gp = [g ; g ; : : : ; g ]; is obtained through an AR function t t t−1 t−p+1 φ(·): Gp !G: (3) through an AR function φ(·) on the space of graphs. Similarly to (1), gt+1 is modelled as on the space G of graphs. In order to formulate an AR model p equivalent to (1) for graphs, the AR function f(·) must be gt+1 = H(φ(gt ); η); (4) defined on the space of graphs, and the concept of additive where noise must also be suitably adapted to the graph representation. H : G × G ! G: Previous art on predictive autoregression in the space of graphs is scarce, with [7] being the most notable contribution is a function that models the effects of noise graph1 η 2 G on p to the best of out knowledge. However, the work in [7] only graph φ(gt ). Function H(·; ·) in (4) is necessary because, as p considers binary graphs governed by a vector AR process of mentioned above, the sum between graphs φ(gt ) and η is not order p = 1 on some graph features, and does not allow to generally defined. consider attributes or non-identified nodes. Assumptions made on the noise in (1) have to be adapted The novel contribution of this work is therefore two-fold. as well. In the classic formulation (1), the condition of First, we formulate an AR system model generating graph- unbiased noise is formulated as E[] = 0 or, equivalently, as valued signals as a generalisation of the numerical case. In f(xt; : : : ; xt−p−1) = E[f(xt; : : : ; xt−p−1) + ]. In the space this formulation, we consider graphs in a very general form. of graphs the assumption of unbiased noise can be extended In particular, our model deals with graphs characterised by: as p f p • directed and undirected edges; φ(gt ) 2 Eη[H(φ(gt ); η)]; (5) • identified and non-identified nodes; where f [·] 2 G is the set of mean graphs according to Frechet´ • variable topology (i.e., connectivity); E [10], defined as the set of graphs minimising: • variable order; Z • node and edge attributes (not necessarily numerical vec- f 0 2 E [g] = arg min d(g; g ) dQg(g): (6) tors, but also categorical data is possible). g02G G Our model also accounts for the presence of an arbitrary sta- Function d(·; ·) in (6) is a pre-metric distance between two tionary noise, which is formulated as a graph-valued random graphs, and Q is a graph distribution defined on the Borel variable that can act on the topology, node attributes, and edge g sets of space (G; d). Examples of graph distances d(·; ·) that attributes of the graphs. can be adopted are the graph edit distances [11]–[13], or Second, we propose to learn the AR function (3) using any distance derived by positive semi-definite kernel functions the recently proposed framework of graph neural networks [14]. Depending on the graph distribution Q , there can be (GNNs) [1], a family of learnable functions that are designed g more than one graph minimising (6), hence ending up with to operate directly on arbitrary graphs. This paper represents a f [·] as a set. We stress that for a sufficiently small Frechet´ first step towards modelling graph-valued stochastic processes, E variation of the noise graph η (see Eq. (7)) and a metric d(·; ·), and introduces a possible way of applying existing tools for the Frechet´ mean graph exists and is unique. deep learning to this new class of prediction problems. The rest of the paper is structured as follows: Section II-A Equation (6) holds only when Z formulates the problem of defining AR models in the space of 0 2 d(g; g ) dQg(g) < 1; graphs and Section II-B introduces the proposed architecture G for the GNN; Section III reports the experimental analysis which can be interpreted as the graph counterpart of Var[] < performed to validate the methodology. 1 in (1). The variance in the graph domain can be expressed II. NEURAL GRAPH AUTOREGRESSION in terms of the Frechet´ variation: Z A. Autoregressive Model for a GGP f 0 2 Var [g] := min d(g; g ) dQg(g) < 1: (7) 0 Due to the lack of basic mathematical operators in the vast g 2G G family of graphs we consider here, the generalisation of model The final AR system model in the graph domain becomes (1) to account for graph data is non-trivial.
Recommended publications
  • Parameters Estimation for Asymmetric Bifurcating Autoregressive Processes with Missing Data
    Electronic Journal of Statistics ISSN: 1935-7524 Parameters estimation for asymmetric bifurcating autoregressive processes with missing data Benoîte de Saporta Université de Bordeaux, GREThA CNRS UMR 5113, IMB CNRS UMR 5251 and INRIA Bordeaux Sud Ouest team CQFD, France e-mail: [email protected] and Anne Gégout-Petit Université de Bordeaux, IMB, CNRS UMR 525 and INRIA Bordeaux Sud Ouest team CQFD, France e-mail: [email protected] and Laurence Marsalle Université de Lille 1, Laboratoire Paul Painlevé, CNRS UMR 8524, France e-mail: [email protected] Abstract: We estimate the unknown parameters of an asymmetric bi- furcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson pro- cess consistent with the binary Bee structure of the data. Under indepen- dence between the process leading to the missing data and the BAR process and suitable assumptions on the driven noise, we establish the strong con- sistency of our estimators on the set of non-extinction of the Galton-Watson process, via a martingale approach. We also prove a quadratic strong law and the asymptotic normality. AMS 2000 subject classifications: Primary 62F12, 62M09; secondary 60J80, 92D25, 60G42. Keywords and phrases: least squares estimation, bifurcating autoregres- sive process, missing data, Galton-Watson process, joint model, martin- gales, limit theorems. arXiv:1012.2012v3 [math.PR] 27 Sep 2011 1. Introduction Bifurcating autoregressive processes (BAR) generalize autoregressive (AR) pro- cesses, when the data have a binary tree structure. Typically, they are involved in modeling cell lineage data, since each cell in one generation gives birth to two offspring in the next one.
    [Show full text]
  • A University of Sussex Phd Thesis Available Online Via Sussex
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details NON-STATIONARY PROCESSES AND THEIR APPLICATION TO FINANCIAL HIGH-FREQUENCY DATA Mailan Trinh A thesis submitted for the degree of Doctor of Philosophy University of Sussex March 2018 UNIVERSITY OF SUSSEX MAILAN TRINH A THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NON-STATIONARY PROCESSES AND THEIR APPLICATION TO FINANCIAL HIGH-FREQUENCY DATA SUMMARY The thesis is devoted to non-stationary point process models as generalizations of the standard homogeneous Poisson process. The work can be divided in two parts. In the first part, we introduce a fractional non-homogeneous Poisson process (FNPP) by applying a random time change to the standard Poisson process. We character- ize the FNPP by deriving its non-local governing equation. We further compute moments and covariance of the process and discuss the distribution of the arrival times. Moreover, we give both finite-dimensional and functional limit theorems for the FNPP and the corresponding fractional non-homogeneous compound Poisson process. The limit theorems are derived by using martingale methods, regular vari- ation properties and Anscombe's theorem.
    [Show full text]
  • Network Traffic Modeling
    Chapter in The Handbook of Computer Networks, Hossein Bidgoli (ed.), Wiley, to appear 2007 Network Traffic Modeling Thomas M. Chen Southern Methodist University, Dallas, Texas OUTLINE: 1. Introduction 1.1. Packets, flows, and sessions 1.2. The modeling process 1.3. Uses of traffic models 2. Source Traffic Statistics 2.1. Simple statistics 2.2. Burstiness measures 2.3. Long range dependence and self similarity 2.4. Multiresolution timescale 2.5. Scaling 3. Continuous-Time Source Models 3.1. Traditional Poisson process 3.2. Simple on/off model 3.3. Markov modulated Poisson process (MMPP) 3.4. Stochastic fluid model 3.5. Fractional Brownian motion 4. Discrete-Time Source Models 4.1. Time series 4.2. Box-Jenkins methodology 5. Application-Specific Models 5.1. Web traffic 5.2. Peer-to-peer traffic 5.3. Video 6. Access Regulated Sources 6.1. Leaky bucket regulated sources 6.2. Bounding-interval-dependent (BIND) model 7. Congestion-Dependent Flows 7.1. TCP flows with congestion avoidance 7.2. TCP flows with active queue management 8. Conclusions 1 KEY WORDS: traffic model, burstiness, long range dependence, policing, self similarity, stochastic fluid, time series, Poisson process, Markov modulated process, transmission control protocol (TCP). ABSTRACT From the viewpoint of a service provider, demands on the network are not entirely predictable. Traffic modeling is the problem of representing our understanding of dynamic demands by stochastic processes. Accurate traffic models are necessary for service providers to properly maintain quality of service. Many traffic models have been developed based on traffic measurement data. This chapter gives an overview of a number of common continuous-time and discrete-time traffic models.
    [Show full text]
  • On Conditionally Heteroscedastic Ar Models with Thresholds
    Statistica Sinica 24 (2014), 625-652 doi:http://dx.doi.org/10.5705/ss.2012.185 ON CONDITIONALLY HETEROSCEDASTIC AR MODELS WITH THRESHOLDS Kung-Sik Chan, Dong Li, Shiqing Ling and Howell Tong University of Iowa, Tsinghua University, Hong Kong University of Science & Technology and London School of Economics & Political Science Abstract: Conditional heteroscedasticity is prevalent in many time series. By view- ing conditional heteroscedasticity as the consequence of a dynamic mixture of in- dependent random variables, we develop a simple yet versatile observable mixing function, leading to the conditionally heteroscedastic AR model with thresholds, or a T-CHARM for short. We demonstrate its many attributes and provide com- prehensive theoretical underpinnings with efficient computational procedures and algorithms. We compare, via simulation, the performance of T-CHARM with the GARCH model. We report some experiences using data from economics, biology, and geoscience. Key words and phrases: Compound Poisson process, conditional variance, heavy tail, heteroscedasticity, limiting distribution, quasi-maximum likelihood estimation, random field, score test, T-CHARM, threshold model, volatility. 1. Introduction We can often model a time series as the sum of a conditional mean function, the drift or trend, and a conditional variance function, the diffusion. See, e.g., Tong (1990). The drift attracted attention from very early days, although the importance of the diffusion did not go entirely unnoticed, with an example in ecological populations as early as Moran (1953); a systematic modelling of the diffusion did not seem to attract serious attention before the 1980s. For discrete-time cases, our focus, as far as we are aware it is in the econo- metric and finance literature that the modelling of the conditional variance has been treated seriously, although Tong and Lim (1980) did include conditional heteroscedasticity.
    [Show full text]
  • Multivariate ARMA Processes
    LECTURE 10 Multivariate ARMA Processes A vector sequence y(t)ofn elements is said to follow an n-variate ARMA process of orders p and q if it satisfies the equation A0y(t)+A1y(t − 1) + ···+ Apy(t − p) (1) = M0ε(t)+M1ε(t − 1) + ···+ Mqε(t − q), wherein A0,A1,...,Ap,M0,M1,...,Mq are matrices of order n × n and ε(t)is a disturbance vector of n elements determined by serially-uncorrelated white- noise processes that may have some contemporaneous correlation. In order to signify that the ith element of the vector y(t) is the dependent variable of the ith equation, for every i, it is appropriate to have units for the diagonal elements of the matrix A0. These represent the so-called normalisation rules. Moreover, unless it is intended to explain the value of yi in terms of the remaining contemporaneous elements of y(t), then it is natural to set A0 = I. It is also usual to set M0 = I. Unless a contrary indication is given, it will be assumed that A0 = M0 = I. It is assumed that the disturbance vector ε(t) has E{ε(t)} = 0 for its expected value. On the assumption that M0 = I, the dispersion matrix, de- noted by D{ε(t)} = Σ, is an unrestricted positive-definite matrix of variances and of contemporaneous covariances. However, if restriction is imposed that D{ε(t)} = I, then it may be assumed that M0 = I and that D(M0εt)= M0M0 =Σ. The equations of (1) can be written in summary notation as (2) A(L)y(t)=M(L)ε(t), where L is the lag operator, which has the effect that Lx(t)=x(t − 1), and p q where A(z)=A0 + A1z + ···+ Apz and M(z)=M0 + M1z + ···+ Mqz are matrix-valued polynomials assumed to be of full rank.
    [Show full text]
  • AUTOREGRESSIVE MODEL with PARTIAL FORGETTING WITHIN RAO-BLACKWELLIZED PARTICLE FILTER Kamil Dedecius, Radek Hofman
    AUTOREGRESSIVE MODEL WITH PARTIAL FORGETTING WITHIN RAO-BLACKWELLIZED PARTICLE FILTER Kamil Dedecius, Radek Hofman To cite this version: Kamil Dedecius, Radek Hofman. AUTOREGRESSIVE MODEL WITH PARTIAL FORGETTING WITHIN RAO-BLACKWELLIZED PARTICLE FILTER. Communications in Statistics - Simulation and Computation, Taylor & Francis, 2011, 41 (05), pp.582-589. 10.1080/03610918.2011.598992. hal- 00768970 HAL Id: hal-00768970 https://hal.archives-ouvertes.fr/hal-00768970 Submitted on 27 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Communications in Statistics - Simulation and Computation For Peer Review Only AUTOREGRESSIVE MODEL WITH PARTIAL FORGETTING WITHIN RAO-BLACKWELLIZED PARTICLE FILTER Journal: Communications in Statistics - Simulation and Computation Manuscript ID: LSSP-2011-0055 Manuscript Type: Original Paper Date Submitted by the 09-Feb-2011 Author: Complete List of Authors: Dedecius, Kamil; Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Department of Adaptive Systems Hofman, Radek; Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Department of Adaptive Systems Keywords: particle filters, Bayesian methods, recursive estimation We are concerned with Bayesian identification and prediction of a nonlinear discrete stochastic process. The fact, that a nonlinear process can be approximated by a piecewise linear function advocates the use of adaptive linear models.
    [Show full text]
  • Uniform Noise Autoregressive Model Estimation
    Uniform Noise Autoregressive Model Estimation L. P. de Lima J. C. S. de Miranda Abstract In this work we present a methodology for the estimation of the coefficients of an au- toregressive model where the random component is assumed to be uniform white noise. The uniform noise hypothesis makes MLE become equivalent to a simple consistency requirement on the possible values of the coefficients given the data. In the case of the autoregressive model of order one, X(t + 1) = aX(t) + (t) with i.i.d (t) ∼ U[α; β]; the estimatora ^ of the coefficient a can be written down analytically. The performance of the estimator is assessed via simulation. Keywords: Autoregressive model, Estimation of parameters, Simulation, Uniform noise. 1 Introduction Autoregressive models have been extensively studied and one can find a vast literature on the subject. However, the the majority of these works deal with autoregressive models where the innovations are assumed to be normal random variables, or vectors. Very few works, in a comparative basis, are dedicated to these models for the case of uniform innovations. 2 Estimator construction Let us consider the real valued autoregressive model of order one: X(t + 1) = aX(t) + (t + 1); where (t) t 2 IN; are i.i.d real random variables. Our aim is to estimate the real valued coefficient a given an observation of the process, i.e., a sequence (X(t))t2[1:N]⊂IN: We will suppose a 2 A ⊂ IR: A standard way of accomplish this is maximum likelihood estimation. Let us assume that the noise probability law is such that it admits a probability density.
    [Show full text]
  • Time Series Analysis 1
    Basic concepts Autoregressive models Moving average models Time Series Analysis 1. Stationary ARMA models Andrew Lesniewski Baruch College New York Fall 2019 A. Lesniewski Time Series Analysis Basic concepts Autoregressive models Moving average models Outline 1 Basic concepts 2 Autoregressive models 3 Moving average models A. Lesniewski Time Series Analysis Basic concepts Autoregressive models Moving average models Time series A time series is a sequence of data points Xt indexed a discrete set of (ordered) dates t, where −∞ < t < 1. Each Xt can be a simple number or a complex multi-dimensional object (vector, matrix, higher dimensional array, or more general structure). We will be assuming that the times t are equally spaced throughout, and denote the time increment by h (e.g. second, day, month). Unless specified otherwise, we will be choosing the units of time so that h = 1. Typically, time series exhibit significant irregularities, which may have their origin either in the nature of the underlying quantity or imprecision in observation (or both). Examples of time series commonly encountered in finance include: (i) prices, (ii) returns, (iii) index levels, (iv) trading volums, (v) open interests, (vi) macroeconomic data (inflation, new payrolls, unemployment, GDP, housing prices, . ) A. Lesniewski Time Series Analysis Basic concepts Autoregressive models Moving average models Time series For modeling purposes, we assume that the elements of a time series are random variables on some underlying probability space. Time series analysis is a set of mathematical methodologies for analyzing observed time series, whose purpose is to extract useful characteristics of the data. These methodologies fall into two broad categories: (i) non-parametric, where the stochastic law of the time series is not explicitly specified; (ii) parametric, where the stochastic law of the time series is assumed to be given by a model with a finite (and preferably tractable) number of parameters.
    [Show full text]
  • Compact Autoregressive Network
    The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) Compact Autoregressive Network Di Wang,1 Feiqing Huang,1 Jingyu Zhao,1 Guodong Li,1∗ Guangjian Tian2 1Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China 2Huawei Noah’s Ark Lab, Hong Kong, China {diwang, amieehuang, gladys17, gdli}@hku.hk, [email protected] Abstract with convolutional or other specific architectures have been proposed recently for sequence modeling, and are shown to Autoregressive networks can achieve promising performance in many sequence modeling tasks with short-range depen- have state-of-the-art accuracy. For example, some autore- dence. However, when handling high-dimensional inputs and gressive networks, such as PixelCNN (Van den Oord et al. outputs, the massive amount of parameters in the network 2016b) and WaveNet (Van den Oord et al. 2016a) for image leads to expensive computational cost and low learning effi- and audio sequence modeling, are compelling alternatives to ciency. The problem can be alleviated slightly by introducing the recurrent networks. one more narrow hidden layer to the network, but the sample This paper aims at the autoregressive model (1) with a size required to achieve a certain training error is still sub- large number of sequences. This problem can be imple- stantial. To address this challenge, we rearrange the weight NP N matrices of a linear autoregressive network into a tensor form, mented by a fully connected network with inputs and and then make use of Tucker decomposition to represent low- outputs. The number of weights will be very large when the rank structures.
    [Show full text]
  • An Evaluation of ARFIMA (Autoregressive Fractional Integral Moving Average) Programs †
    axioms Article An Evaluation of ARFIMA (Autoregressive Fractional Integral Moving Average) Programs † Kai Liu 1, YangQuan Chen 2,* and Xi Zhang 1 1 School of Mechanical Electronic & Information Engineering, China University of Mining and Technology, Beijing 100083, China; [email protected] (K.L.); [email protected] (X.Z.) 2 Mechatronics, Embedded Systems and Automation Lab, School of Engineering, University of California, Merced, CA 95343, USA * Correspondence: [email protected]; Tel.: +1-209-228-4672; Fax: +1-209-228-4047 † This paper is an extended version of our paper published in An evaluation of ARFIMA programs. In Proceedings of the International Design Engineering Technical Conferences & Computers & Information in Engineering Conference, Cleveland, OH, USA, 6–9 August 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017; In Press. Academic Editors: Hans J. Haubold and Javier Fernandez Received: 13 March 2017; Accepted: 14 June 2017; Published: 17 June 2017 Abstract: Strong coupling between values at different times that exhibit properties of long range dependence, non-stationary, spiky signals cannot be processed by the conventional time series analysis. The autoregressive fractional integral moving average (ARFIMA) model, a fractional order signal processing technique, is the generalization of the conventional integer order models—autoregressive integral moving average (ARIMA) and autoregressive moving average (ARMA) model. Therefore, it has much wider applications since it could capture both short-range dependence and long range dependence. For now, several software programs have been developed to deal with ARFIMA processes. However, it is unfortunate to see that using different numerical tools for time series analysis usually gives quite different and sometimes radically different results.
    [Show full text]
  • A General Autoregressive Model with Markov Switching: Estimation and Consistency
    A General Autoregressive Model with Markov Switching: Estimation and Consistency Yingfu Xie, Jun Yu and Bo Ranneby Research Report Centre of Biostochastics Swedish University of Report 2007:6 Agricultural Sciences ISSN 1651-8543 A general autoregressive model with Markov switching: estimation and consistency Yingfu Xie1, Jun Yu and Bo Ranneby Centre of Biostochastics Swedish University of Agricultural Sciences SE-901 83 Umeºa,Sweden Abstract In this paper, a general autoregressive model with Markov switching is considered, where the autoregression may be of an in¯nite order. The consistency of the maximum likelihood estimators for this model is ob- tained under regular assumptions. Examples of ¯nite and in¯nite order Markov switching AR models are discussed. The simulation study with these examples illustrates the consistency and asymptotic normality of the estimators. Keywords: General autoregressive model, Markov switching, MLE, consis- tency, asymptotic normality. 1E-mail address to the correspondence author: [email protected] 1 Introduction In economic and ¯nancial studies, more and more researchers think it may be more reasonable to consider that there are di®erent economic states behind an economic system, and the outcomes of the system depend on these states. For example, in the analysis of the US annual GNP (gross national product) growth rate series, Hamilton (1989) treated the expansion and recession periods as two states (called regimes in econometric literature), and assumed that the shift between these two regimes was governed by a Markov chain. But the Markov chain is unobservable, the inference has to be based only on the observations, the outcomes of some economic variables.
    [Show full text]
  • Autoregressive Process Modeling Via the Lasso Procedure
    Autoregressive Process Modeling via the Lasso Procedure Yuval Nardi∗ Alessandro Rinaldoy Department of Statistics Department of Statistics Carnegie Mellon University Carnegie Mellon University Pittsburgh, PA 15213-3890 USA Pittsburgh, PA 15213-3890 USA Abstract The Lasso is a popular model selection and estimation procedure for linear models that enjoys nice theoretical properties. In this paper, we study the Lasso estimator for fitting autoregressive time series models. We adopt a double asymptotic framework where the maximal lag may increase with the sample size. We derive theoretical results establishing various types of consistency. In particular, we derive conditions under which the Lasso estimator for the autoregressive coefficients is model selection consistent, estimation consistent and prediction consistent. Simulation study results are reported. 1 Introduction Classical stationary time series modeling assumes that data are a realization of a mix of autoregressive processes and moving average processes, or an ARMA model (see, e.g. Davis and Brockwell, 1991). Typically, both estimation and model fitting rely on the assumption of fixed and low dimensional parameters and include (i) the estimation of the appropriate coefficients under the somewhat unrealistic assumption that the orders of the AR and of the MA processes are known in advance, or (ii) some model selection procedures that sequentially fit models of increasing dimensions. In practice, however, it is very difficult to verify the assumption that the realized series does come from an ARMA process. Instead, it is usually assumed that the given data are a realization of a linear time series, which may be represented by an infinite-order autoregressive process. Some study has been done on the accuracy of an AR approximation for these processes: see Shibata(1980), Goldenshluger and Zeevi(2001) and Ing and Wei(2005).
    [Show full text]