Time-Space Tradeoffs and Query Complexity in Statistics, Coding Theory, and Quantum Computing

Total Page:16

File Type:pdf, Size:1020Kb

Time-Space Tradeoffs and Query Complexity in Statistics, Coding Theory, and Quantum Computing Time-Space Tradeoffs and Query Complexity in Statistics, Coding Theory, and Quantum Computing Widad Machmouchi A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2013 Reading Committee: Paul Beame, Chair Anna Karlin Anup Rao Program Authorized to Offer Degree: Computer Science and Engineering University of Washington Abstract Time-Space Tradeoffs and Query Complexity in Statistics, Coding Theory, and Quantum Computing Widad Machmouchi Chair of the Supervisory Committee: Professor Paul Beame Computer Science and Engineering Computational complexity is the field that studies the computational resources needed by algorithms to correctly solve computational problems. In this thesis, we derive lower bounds on the compu- tational complexity of different problems for different classes of algorithms. The computational resources we consider are the running time, the memory usage and the input query complexity; i.e., the number of positions in the input that the algorithm reads. While deriving upper bounds involves constructing algorithms that run efficiently in their computational resources, lower bounds for a computational problem establish limits on how fast or space-efficient any algorithm solving that problem can be. We consider two main themes of lower bounds: time-space tradeoffs and query complexity lower bounds. Time-space tradeoffs define a relation between the running time and space of any algorithm solving a certain problems. They give a complete picture of the hardness of a problem by deriving a lower bound on one resource when the other is limited. Query complex- ity measures the depth of a decision tree computing the problem. We derive several lower bounds and upper bounds for different problems on different types of classical computational models and on quantum computers, where the queries to the input are represented by quantum operations operating on the qubits of the algorithm: • We derive the largest time-space tradeoff known for a randomized algorithm solving an ex- plicit problem. We consider the pointer jumping problem, also known as the outdegree-1 graph accessibility problem and derive a T 2 Ω(n log(n=S) log log (n=S)) time-space trade- off for any randomized oblivious algorithm computing it. Oblivious algorithms have the prop- erty that the sequence of operations performed is independent of the value of the input. We derive a similar lower bound for randomized oblivious algorithms with boolean inputs. • Frequency moments and order statistics are attributes computed on a sequence of numbers and are extremely relevant in various data analysis settings. We consider computing several copies of these functions on overlapping sequences of numbers by considering a window of a fixed length and sliding it over the input; these versions are called sliding-window versions of these functions. We give hardness separations between the sliding-window versions of these statistics. On one hand, we give a TS 2 Ω(n2) lower bounds for any algorithm computing sliding-window frequency moments. To complement our lower bound, we give a TS 2 O~(n2) comparison-based algorithm for sliding-window frequency moments. On the other hand we describe a T 2S 2 O~(n3) algorithm for sliding-window element distinctness. For order statistics, we derive a similar lower bound of TS 2 Ω(n2) for any algorithm computing a sliding-widow version of the median, while for the sliding window version of maximum (and minimum), we construct an O(n log n)-time, logarithmic space algorithm. • We study the increase in complexity on quantum computers when considering sliding-window frequency moments. We show that quantum computers do not require the same increase in complexity as their classical counterparts by constructing a quantum algorithm for sliding- window version of the zeroth frequency moments running in time O(n3=2) and logarithmic space, thus beating the classical lower bound for this problem. • In the area of error-correcting codes, we study the query complexity of error detection and correction algorithms. We prove that linear codes over large alphabets that are small in size and concentrated in terms of their codeword weights have testers and correctors that require only a constant number of queries to a word received across a noisy channel. Such codes are called locally-testable and self-correctable. As random codes of small size have the property that their codeword weights are concentrated in a small range of values, they are also locally- testable and self-correctable with high probability. • For linear codes with information-efficient encoding, we study the tradeoff between the time and space of their encoders, and their error-correction property. We derive properties on generator matrices of asymptotically good linear codes that guarantee an optimal time-space tradeoff of TS 2 Ω(n2) for any algorithm encoding them. Moreover, we prove a first step in an approach to establish these properties for all generator matrices of such codes. • To compare classical computers to their quantum counterparts, we consider the query com- plexity of quantum algorithms computing frequency moments and the ONTO function that takes as input a function and determines whether it is surjective. We prove that any quantum computer computing the ONTO function or the parity of the zeroth frequency moment requires a linear number of queries to the input. Since the ONTO function with boolean inputs has a simple polynomial-size, constant-depth circuit, we obtain an almost linear lower bound on the query complexity of AC0, a special class of circuits that have polynomial size, constant depth and unbounded fan-in for their gates. TABLE OF CONTENTS Page List of Figures . iv Chapter 1: Introduction . 1 1.1 Time-Space Tradeoffs . 2 1.2 Query Complexity Lower Bounds . 6 1.3 Overview of the Results . 8 1.4 Organization of the Thesis . 11 Part I: Time-Space Tradeoffs . 13 Chapter 2: Computational Models . 14 2.1 Branching Programs . 16 2.2 Yao’s minimax Principle . 23 2.3 Multiparty Communication Complexity . 24 2.4 Doob Martingales and the Azuma-Hoeffding Inequality . 26 2.5 Lower Bounds for Branching Programs . 27 Chapter 3: Randomized Oblivious Branching Programs . 35 3.1 Pointer Jumping and Generalized Inner Product . 36 3.2 Contributions . 36 3.3 Techniques . 37 3.4 Related Work . 38 3.5 Reducing Permuted Problems to 1GAP ....................... 38 3.6 Time-Space Tradeoff Lower Bound for P ermuted-GIP and 1GAP . 41 3.7 Time-Space Tradeoff Lower Bound for Randomized Oblivious Boolean Branching Programs . 48 i 3.8 Discussion and Open Questions . 54 Chapter 4: Sliding Window Functions . 55 4.1 Frequency Moments, Element Distinctness, and Order Statistics . 55 4.2 Sliding Windows . 56 4.3 Contributions and Techniques . 57 4.4 Related Work . 59 4.5 Element Distinctness and Small-Space Collision-Finding . 60 4.6 Element Distinctness over Sliding Windows . 68 4.7 Frequency Moments over Sliding Windows . 74 4.8 Order Statistics over Sliding Windows . 85 4.9 Discussion and Open Questions . 86 Part II: Error Correcting codes . 89 Chapter 5: Coding Theory Preliminaries . 90 5.1 Coding Theory Basic Notions . 92 5.2 Query Complexity of Error Detection and Correction . 95 5.3 Time and Space Complexity of Encoding . 99 Chapter 6: Local-Testability and Self-Correctability of q-ary Sparse Linear Codes . 102 6.1 Contributions and Techniques . 102 6.2 q-ary Krawtchouk Polynomials and the MacWilliams Identity . 103 6.3 Weight distribution of duals of sparse codes . 106 6.4 Local Testing . 108 6.5 Self-correctability . 113 6.6 Applications to random linear codes . 116 6.7 Discussion and Open Questions . 117 Chapter 7: Sufficient Conditions For Optimal Time-Space Tradeoffs For Encoders . 118 7.1 From Branching Programs to Rigid Matrices . 118 7.2 Removing Low-Dimension Projections from Asymptotically Good Codes . 120 7.3 Comparison to Subsequent Work . 123 ii Part III: Quantum Computing . 125 Chapter 8: Quantum Lower Bounds . 126 8.1 The Quantum Query Model . 128 8.2 AC0 .......................................... 129 8.3 Previous Work on Quantum Query Complexity . 130 8.4 Contributions . 132 8.5 The Quantum Adversary Method . 133 8.6 Quantum Query Lower Bounds for the 2-TO-1-VS-ALMOST-2-TO-1 Function . 135 8.7 A Near Optimal Query Lower Bound for AC0 . 138 8.8 Formula Size Lower Bound for the ONTO Function . 139 8.9 Parity of Sliding-Window F0 ............................. 140 8.10 Discussion and Open Questions . 141 Chapter 9: Conclusion . 143 9.1 Direction for Further Study . 144 Bibliography . 146 iii LIST OF FIGURES Figure Number Page 3.1 A width 4 branching program computing GIP3;4. .................... 40 4.1 Collision-finding with multiple sources ......................... 62 4.2 Transitions from the Markov chain in the proof of Lemma 4.3 . 66 8.1 AC0 circuit computing the ONTO function . 139 iv ACKNOWLEDGMENTS First and foremost, this work would not have been possible without my advisor Paul Beame. His mentoring, good advice, and encouragement throughout my years at UW were invaluable for my academic development. His extensive knowledge and creativity provided me with the right guidance through research paths that were too windy to lead anywhere or had the right idea to pursue. I am grateful for all the effort and care he showed me during the Princeton visit and advising me during the years where Venkat was away. I am also thankful for Venkat Guruswami for advising me through my first few years at UW. Although we did not work together for long, I was lucky to experience his enthusiasm and brilliance and thankful for all the guidance he offered me. I would like to thank Anup Rao and Anna Karlin for their comments and for Rekha Thomas and Dan Suciu for being on my committee.
Recommended publications
  • Sustained Space Complexity
    Sustained Space Complexity Jo¨elAlwen1;3, Jeremiah Blocki2, and Krzysztof Pietrzak1 1 IST Austria 2 Purdue University 3 Wickr Inc. Abstract. Memory-hard functions (MHF) are functions whose eval- uation cost is dominated by memory cost. MHFs are egalitarian, in the sense that evaluating them on dedicated hardware (like FPGAs or ASICs) is not much cheaper than on off-the-shelf hardware (like x86 CPUs). MHFs have interesting cryptographic applications, most notably to password hashing and securing blockchains. Alwen and Serbinenko [STOC'15] define the cumulative memory com- plexity (cmc) of a function as the sum (over all time-steps) of the amount of memory required to compute the function. They advocate that a good MHF must have high cmc. Unlike previous notions, cmc takes into ac- count that dedicated hardware might exploit amortization and paral- lelism. Still, cmc has been critizised as insufficient, as it fails to capture possible time-memory trade-offs; as memory cost doesn't scale linearly, functions with the same cmc could still have very different actual hard- ware cost. In this work we address this problem, and introduce the notion of sustained- memory complexity, which requires that any algorithm evaluating the function must use a large amount of memory for many steps. We con- struct functions (in the parallel random oracle model) whose sustained- memory complexity is almost optimal: our function can be evaluated using n steps and O(n= log(n)) memory, in each step making one query to the (fixed-input length) random oracle, while any algorithm that can make arbitrary many parallel queries to the random oracle, still needs Ω(n= log(n)) memory for Ω(n) steps.
    [Show full text]
  • Lecture 10: Space Complexity III
    Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Lecture 10: Space Complexity III Arijit Bishnu 27.03.2010 Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ). The class NPSPACE is an analog of the class NP. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ).
    [Show full text]
  • A Short History of Computational Complexity
    The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns.
    [Show full text]
  • Lecture 4: Space Complexity II: NL=Conl, Savitch's Theorem
    COM S 6810 Theory of Computing January 29, 2009 Lecture 4: Space Complexity II Instructor: Rafael Pass Scribe: Shuang Zhao 1 Recall from last lecture Definition 1 (SPACE, NSPACE) SPACE(S(n)) := Languages decidable by some TM using S(n) space; NSPACE(S(n)) := Languages decidable by some NTM using S(n) space. Definition 2 (PSPACE, NPSPACE) [ [ PSPACE := SPACE(nc), NPSPACE := NSPACE(nc). c>1 c>1 Definition 3 (L, NL) L := SPACE(log n), NL := NSPACE(log n). Theorem 1 SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME 2 O(S(n)) . This immediately gives that N L ⊆ P. Theorem 2 STCONN is NL-complete. 2 Today’s lecture Theorem 3 N L ⊆ SPACE(log2 n), namely STCONN can be solved in O(log2 n) space. Proof. Recall the STCONN problem: given digraph (V, E) and s, t ∈ V , determine if there exists a path from s to t. 4-1 Define boolean function Reach(u, v, k) with u, v ∈ V and k ∈ Z+ as follows: if there exists a path from u to v with length smaller than or equal to k, then Reach(u, v, k) = 1; otherwise Reach(u, v, k) = 0. It is easy to verify that there exists a path from s to t iff Reach(s, t, |V |) = 1. Next we show that Reach(s, t, |V |) can be recursively computed in O(log2 n) space. For all u, v ∈ V and k ∈ Z+: • k = 1: Reach(u, v, k) = 1 iff (u, v) ∈ E; • k > 1: Reach(u, v, k) = 1 iff there exists w ∈ V such that Reach(u, w, dk/2e) = 1 and Reach(w, v, bk/2c) = 1.
    [Show full text]
  • 26 Space Complexity
    CS:4330 Theory of Computation Spring 2018 Computability Theory Space Complexity Haniel Barbosa Readings for this lecture Chapter 8 of [Sipser 1996], 3rd edition. Sections 8.1, 8.2, and 8.3. Space Complexity B We now consider the complexity of computational problems in terms of the amount of space, or memory, they require B Time and space are two of the most important considerations when we seek practical solutions to most problems B Space complexity shares many of the features of time complexity B It serves a further way of classifying problems according to their computational difficulty 1 / 22 Space Complexity Definition Let M be a deterministic Turing machine, DTM, that halts on all inputs. The space complexity of M is the function f : N ! N, where f (n) is the maximum number of tape cells that M scans on any input of length n. Definition If M is a nondeterministic Turing machine, NTM, wherein all branches of its computation halt on all inputs, we define the space complexity of M, f (n), to be the maximum number of tape cells that M scans on any branch of its computation for any input of length n. 2 / 22 Estimation of space complexity Let f : N ! N be a function. The space complexity classes, SPACE(f (n)) and NSPACE(f (n)), are defined by: B SPACE(f (n)) = fL j L is a language decided by an O(f (n)) space DTMg B NSPACE(f (n)) = fL j L is a language decided by an O(f (n)) space NTMg 3 / 22 Example SAT can be solved with the linear space algorithm M1: M1 =“On input h'i, where ' is a Boolean formula: 1.
    [Show full text]
  • Complexity Slides
    Basics of Complexity “Complexity” = resources • time • space • ink • gates • energy Complexity is a function • Complexity = f (input size) • Value depends on: – problem encoding • adj. list vs. adj matrix – model of computation • Cray vs TM ~O(n3) difference TM time complexity Model: k-tape deterministic TM (for any k) DEF: M is T(n) time bounded iff for every n, for every input w of size n, M(w) halts within T(n) transitions. – T(n) means max {n+1, T(n)} (so every TM spends at least linear time). – worst case time measure – L recursive à for some function T, L is accepted by a T(n) time bounded TM. TM space complexity Model: “Offline” k-tape TM. read-only input tape k read/write work tapes initially blank DEF: M is S(n) space bounded iff for every n, for every input w of size n, M(w) halts having scanned at most S(n) work tape cells. – Can use less tHan linear space – If S(n) ≥ log n then wlog M halts – worst case measure Complexity Classes Dtime(T(n)) = {L | exists a deterministic T(n) time-bounded TM accepting L} Dspace(S(n)) = {L | exists a deterministic S(n) space-bounded TM accepting L} E.g., Dtime(n), Dtime(n2), Dtime(n3.7), Dtime(2n), Dspace(log n), Dspace(n), ... Linear Speedup THeorems “WHy constants don’t matter”: justifies O( ) If T(n) > linear*, tHen for every constant c > 0, Dtime(T(n)) = Dtime(cT(n)) For every constant c > 0, Dspace(S(n)) = Dspace(cS(n)) (Proof idea: to compress by factor of 100, use symbols tHat jam 100 symbols into 1.
    [Show full text]
  • Space Complexity
    ComputabilityandComplexity 18-1 ComputabilityandComplexity 18-2 MeasuringSpace Sofarwehavedefinedcomplexitymeasuresbasedonthetimeused bythealgorithm SpaceComplexity Nowweshalldoasimilaranalysisbasedonthespaceused IntheTuringMachinemodelofcomputationthisiseasytomeasure —justcountthenumberoftapecellsreadduringthecomputation Definition1 ThespacecomplexityofaTuringMachine Tisthe functionsuchthatSpaceT SpaceisthenumberofT (x ) distincttapecellsvisitedduringthecomputation T(x) ComputabilityandComplexity (Notethatif T(x)doesnothalt,thenisundefSpace T (x) ined.) AndreiBulatov ComputabilityandComplexity 18-3 ComputabilityandComplexity 18-4 Palindromes AnotherDefinition Considerthefollowing3-tapemachinedecidingifaninputstringisapalindrome •Thefirsttapecontainstheinputstringandisneveroverwritten ByDef.1,thespacecomplexityofthismachineisn •Themachineworksinstages.Onstage iitdoesthefollowing However,itseemstobefairtodefineitsspacecomplexityas log n -thesecondtapecontainsthebinaryrepresentationof i -themachinefindsandremembersthe i-thsymbolofthestringby (1)initializingthe3 rd string j =1 ;(2)if j< ithenincrement j; Definition2 Let TbeaTuringMachinewith2tapessuchthat (3)if j= ithenrememberthecurrentsymbolbyswitchingto thefirsttapecontainstheinputandneveroverwritten.The correspondentstate spacecomplexityof TisthefunctionsuchthatSpace T -inasimilarwaythemachinefindsthe i-thsymbolfromtheend isthenumberofSpace T (x) distinctcellsonthesecondtape ofthestring visitedduringthecomputation T(x) -ifthesymbolsareunequal,haltwith“no” •Ifthe i-thsymbolistheblanksymbol,haltwith“yes”
    [Show full text]
  • Space Complexity Space Is a Computation Resource
    Space Complexity Space is a computation resource. Unlike time it can be reused. Computational Complexity, by Fu Yuxi Space Complexity 1 / 43 Synopsis 1. Space Bounded Computation 2. Logspace Reduction 3. PSPACE Completeness 4. Savitch Theorem 5. NL Completeness 6. Immerman-Szelepcs´enyiTheorem Computational Complexity, by Fu Yuxi Space Complexity 2 / 43 Space Bounded Computation Computational Complexity, by Fu Yuxi Space Complexity 3 / 43 Space Bounded Computation Let S : N ! N and L ⊆ f0; 1g∗. We say that L 2 SPACE(S(n)) if there is some c and some TM deciding L that never uses more than cS(n) nonblank worktape locations on inputs of length n. Computational Complexity, by Fu Yuxi Space Complexity 4 / 43 Space Constructible Function Suppose S : N ! N and S(n) ≥ log(n). 1. S is space constructible if there is a Turing Machine that computes the function n 1 7! xS(n)y in O(S(n)) space. 2. S is space constructible if there is a Turing Machine that upon receiving 1n uses exactly S(n)-space. The second definition is slightly less general than the first. Computational Complexity, by Fu Yuxi Space Complexity 5 / 43 Space Bounded Computation, the Nondeterministic Case L 2 NSPACE(S(n)) if there is some c and some NDTM deciding L that never uses more than cS(n) nonblank worktape locations on inputs of length n, regardless of its nondeterministic choices. For space constructible function S(n) we could allow a machine in NSPACE(S(n)) to diverge and to use more than cS(n) space in unsuccessful computation paths.
    [Show full text]
  • Complexity Theory Lectures 1–6
    Complexity Theory 1 Complexity Theory Lectures 1–6 Lecturer: Dr. Timothy G. Griffin Slides by Anuj Dawar Computer Laboratory University of Cambridge Easter Term 2009 http://www.cl.cam.ac.uk/teaching/0809/Complexity/ Cambridge Easter 2009 Complexity Theory 2 Texts The main texts for the course are: Computational Complexity. Christos H. Papadimitriou. Introduction to the Theory of Computation. Michael Sipser. Other useful references include: Computers and Intractability: A guide to the theory of NP-completeness. Michael R. Garey and David S. Johnson. Structural Complexity. Vols I and II. J.L. Balc´azar, J. D´ıaz and J. Gabarr´o. Computability and Complexity from a Programming Perspective. Neil Jones. Cambridge Easter 2009 Complexity Theory 3 Outline A rough lecture-by-lecture guide, with relevant sections from the text by Papadimitriou (or Sipser, where marked with an S). Algorithms and problems. 1.1–1.3. • Time and space. 2.1–2.5, 2.7. • Time Complexity classes. 7.1, S7.2. • Nondeterminism. 2.7, 9.1, S7.3. • NP-completeness. 8.1–8.2, 9.2. • Graph-theoretic problems. 9.3 • Cambridge Easter 2009 Complexity Theory 4 Outline - contd. Sets, numbers and scheduling. 9.4 • coNP. 10.1–10.2. • Cryptographic complexity. 12.1–12.2. • Space Complexity 7.1, 7.3, S8.1. • Hierarchy 7.2, S9.1. • Descriptive Complexity 5.6, 5.7. • Cambridge Easter 2009 Complexity Theory 5 Complexity Theory Complexity Theory seeks to understand what makes certain problems algorithmically difficult to solve. In Data Structures and Algorithms, we saw how to measure the complexity of specific algorithms, by asymptotic measures of number of steps.
    [Show full text]
  • PAC Model-Free Reinforcement Learning
    PAC Model-Free Reinforcement Learning Alexander L. Strehl [email protected] Lihong Li [email protected] Department of Computer Science, Rutgers University, Piscataway, NJ 08854 USA Eric Wiewiora [email protected] Computer Science and Engineering Department University of California, San Diego John Langford [email protected] TTI-Chicago, 1427 E 60th Street, Chicago, IL 60637 USA Michael L. Littman [email protected] Department of Computer Science, Rutgers University, Piscataway, NJ 08854 USA Abstract When evaluating RL algorithms, there are three es- For a Markov Decision Process with finite sential traits to consider: space complexity, computa- state (size S) and action spaces (size A per tional complexity, and sample complexity. We define state), we propose a new algorithm—Delayed a timestep to be a single interaction with the environ- Q-Learning. We prove it is PAC, achieving ment. Space complexity measures the amount of mem- near optimal performance except for O˜(SA) ory required to implement the algorithm while compu- timesteps using O(SA) space, improving on tational complexity measures the amount of operations the O˜(S2A) bounds of best previous algo- needed to execute the algorithm, per timestep. Sam- rithms. This result proves efficient reinforce- ple complexity measures the amount of timesteps for ment learning is possible without learning a which the algorithm does not behave near optimally model of the MDP from experience. Learning or, in other words, the amount of experience it takes takes place from a single continuous thread of to learn to behave well. experience—no resets nor parallel sampling We will call algorithms whose sample complexity can is used.
    [Show full text]
  • On the Space Complexity of Randomized Synchronization
    On the Space Complexity of Randomized Synchronization FAITH FICH University of Toronto, Toronto, Ont., Canada MAURICE HERLIHY Brown University, Providence, Rhode Island AND NIR SHAVIT Tel-Aviv University, Tel-Aviv, Israel Abstract. The “wait-free hierarchy” provides a classification of multiprocessor synchronization primitives based on the values of n for which there are deterministic wait-free implementations of n-process consensus using instances of these objects and read-write registers. In a randomized wait-free setting, this classification is degenerate, since n-process consensus can be solved using only O(n) read-write registers. In this paper, we propose a classification of synchronization primitives based on the space complexity of randomized solutions to n-process consensus. A historyless object, such as a read-write register, a swap register, or a test&set register, is an object whose state depends only on the last nontrivial operation that was applied to it. We show that, using historyless objects, V(=n) object instances are necessary to solve n-process consensus. This lower bound holds even if the objects have unbounded size and the termination requirement is nondeterministic solo termination, a property strictly weaker than randomized wait-freedom. This work was supported by the Natural Science and Engineering Research Council of Canada grant A1976 and the Information Technology Research Centre of Ontario, ONR grant N00014-91-J-1046, NSF grant 8915206-CCR and 9520298-CCR, and DARPA grants N00014-92-J-4033 and N00014-91- J-1698. A preliminary version of this paper appears in the Proceedings of 12th Annual ACM Symposium on Principles of Distributed Computing (Ithaca, N.Y., Aug.
    [Show full text]
  • Space Complexity and LOGSPACE
    Space Complexity and LOGSPACE Michal Hanzlík∗ Abstract This paper deal with the computational complexity theory, with emphasis on classes of the space complexity. One of the most impor- tant class in this field is LOGSPACE. There are several interesting results associated with this class, namely theorems of Savitch and Im- merman – Szelepcsényi. Techniques that are used when working with LOGSPACE are different from those known from the time complexity because space, compared to time, may be reused. There are many open problems in this area, and one will be mentioned at the end of the paper. 1 Introduction Computational complexity focuses mainly on two closely related topics. The first of them is the notion of complexity of a “well defined” problem and the second is the ensuing hierarchy of such problems. By “well defined” problem we mean that all the data required for the computation are part of the input. If the input is of such a form we can talk about the complexity of a problem which is a measure of how much resources we need to do the computation. What do we mean by relationship between problems? An important tech- nique in the computational complexity is a reduction of one problem to an- other. Such a reduction establish that the first problem is at least as difficult to solve as the second one. Thus, these reductions form a hierarchy of prob- lems. ∗Department of Mathematics, Faculty of Applied Sciences, University of West Bohemia in Pilsen, Univerzitní 22, Plzeň, [email protected] 1.1 Representation In mathematics one usually works with mathematical objects as with abstract entities.
    [Show full text]