molecules Review A Compressive Review about Taxol®: History and Future Challenges Julia Gallego-Jara * , Gema Lozano-Terol, Rosa Alba Sola-Martínez, Manuel Cánovas-Díaz and Teresa de Diego Puente Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus de Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, P.O. Box 4021, 30100 Murcia, Spain;
[email protected] (G.-L.T.);
[email protected] (R.A.S.-M.);
[email protected] (M.C.-D.);
[email protected] (T.d.D.P.) * Correspondence:
[email protected]; Tel.: +34-86-888-7395 Received: 30 November 2020; Accepted: 16 December 2020; Published: 17 December 2020 Abstract: Taxol®, which is also known as paclitaxel, is a chemotherapeutic agent widely used to treat different cancers. Since the discovery of its antitumoral activity, Taxol® has been used to treat over one million patients, making it one of the most widely employed antitumoral drugs. Taxol® was the first microtubule targeting agent described in the literature, with its main mechanism of action consisting of the disruption of microtubule dynamics, thus inducing mitotic arrest and cell death. However, secondary mechanisms for achieving apoptosis have also been demonstrated. Despite its wide use, Taxol® has certain disadvantages. The main challenges facing Taxol® are the need to find an environmentally sustainable production method based on the use of microorganisms, increase its bioavailability without exerting adverse effects on the health of patients and minimize the resistance presented by a high percentage of cells treated with paclitaxel. This review details, in a succinct manner, the main aspects of this important drug, from its discovery to the present day.