NBS-INA-The Institute for Numerical Analysis

Total Page:16

File Type:pdf, Size:1020Kb

NBS-INA-The Institute for Numerical Analysis t PUBUCATiONS fl^ United States Department of Commerce I I^^^V" I ^1 I National Institute of Standards and Tectinology NAT L INST. OF STAND 4 TECH R.I.C. A111D3 733115 NIST Special Publication 730 NBS-INA — The Institute for Numerical Analysis - UCLA 1947-1954 Magnus R, Hestenes and John Todd -QC- 100 .U57 #730 1991 C.2 i I NIST Special Publication 730 NBS-INA — The Institute for Numerical Analysis - UCLA 1947-1954 Magnus R. Hestenes John Todd Department of Mathematics Department of Mathematics University of California California Institute of Technology at Los Angeles Pasadena, CA 91109 Los Angeles, CA 90078 Sponsored in part by: The Mathematical Association of America 1529 Eighteenth Street, N.W. Washington, DC 20036 August 1991 U.S. Department of Commerce Robert A. Mosbacher, Secretary National Institute of Standards and Technology John W. Lyons, Director National Institute of Standards U.S. Government Printing Office For sale by the Superintendent and Technology Washington: 1991 of Documents Special Publication 730 U.S. Government Printing Office Natl. Inst. Stand. Technol. Washington, DC 20402 Spec. Publ. 730 182 pages (Aug. 1991) CODEN: NSPUE2 ABSTRACT This is a history of the Institute for Numerical Analysis (INA) with special emphasis on its research program during the period 1947 to 1956. The Institute for Numerical Analysis was located on the campus of the University of California, Los Angeles. It was a section of the National Applied Mathematics Laboratories, which formed the Applied Mathematics Division of the National Bureau of Standards (now the National Institute of Standards and Technology), under the U.S. Department of Commerce. This history of the program at INA is concerned primarily with the development of mathemat- ics pertinent to solving numerical computations. This development could happen only if some mathematicians were proficient in handling the electronic digital computers. To insure that there would be some, INA was constituted. It was well funded, and could attract first class mathemati- cians to take a year off for research at INA. There they were in the midst of people solving problems of considerable difficulty using the digital computers. They were thus enticed into using them. When this happened, many important developments emerged. This history is centered around these people and asks "Who were there?", "What were their interests?", "What did they do?". Key words: differential equations; digital computers; history; linear programming; matrix; numeri- cal analysis; UCLA iii FOREWORD In the 1930's A. M. Turing conceived the idea of a computer. The electronic technology needed to construct a working model did not then exist. However, during World War II great strides were made in electronic technology. Just after World War II there appeared the ENIAC. It was an electronic computer but not of the Turing type. However, the Tiu"ing computer was obvi- ously just around the comer, and would run rings around the ENIAC. It was anticipated that the Turing computer would give much assistance in various mathematical studies. This could happen only if some mathematicians were proficient in handling the Turing com- puter. To assure that there would be some, the Institute for Numerical Analysis (INA) was consti- tuted. It was well funded, and could attract first class mathematicians to take a year off for research at INA. There they were in the midst of people solving problems of considerable difficialty by the use of the Turing computers. They were enticed into learning to use them. When this happened, many important developments emerged, as recounted in the history that follows. Summer 1985 J. Baridey Rosser Professor Emeritus Center for Mathematical Sciences University of Wisconsin, Madison V ( I PREFACE Over 30 years have passed since the events described in this History took place. We have recounted them to the best of our recollection and apologize for our sins of omission and commis- sion. We have given references to our sources and the material which we have used will be de- posited in appropriate places. The Quarterly Progress Reports and internal memoranda of the Institute for Numerical Analysis (INA) were particularly useful. Attention is invited to the Proceed- ings of the 1987 Princeton Conference [131] in which the articles by G. B. Dantzig and ourselves are particularly relevant. Our point of view is probably biased towards the West and may not represent the official Washington attitude. Further, in part because the original sponsor of the writing is the Mathemati- cal Association of America, we have stressed the research and educational aspects of the program, rather than the machine development and computational service aspects, although they had imdeni- able importance. Finally, our selection of topics for more detailed discussion is undoubtedly differ- ent from that of others who might have undertaken this work— differential equations, Monte Carlo, combinatorics, number theory could well have been emphasized more. We are grateful to many of our former colleagues who shared their reminiscences with us, and we are grateful for the opportunity to communicate to a wider public some account of what was an exciting time for both of us. The machine development aspect of INA has been well documented. A short history of this development is reproduced in Appendix C. This history was written by H. D. Huskey, who was responsible for the building of the SWAC, the National Bureau of Standards Western Automatic Computer. There is, however, no adequate documentation of the research aspect of INA. Accord- ingly, we give here a history of the program at INA concerned primarily with the development of mathematics pertinent to solving problems involving numerical computations. We include abbrevi- ated remarks about other aspects of the program at INA. Our story is centered around people. We ask "Who were there?", "What were their interests?", "What did they do?". We give only selected answers to the questions with the hope that they are sufficient to give a bird's-eye view of the program at INA. In a sense the researchers at INA pioneered in modern numerical analysis. "Graduates" of INA are scattered all over the United States and elsewhere. They have done much to promote the development of numerical mathematics pertinent for use of computing machines for scientific and educational purposes. We wish to single out for special mention three persons who played a dominant role in the formation and maintenance of INA. They are E. U. Condon, John H. Curtiss, and Mina Rees. Condon was the Director of the National Bureau of Standards (NBS) and was an enthusiastic supporter of the project. He gave the "go ahead" for Curtiss to set up INA as part of the Applied Mathematics Program of the NBS. Curtiss was the guiding force of the INA project and was instrimiental in interesting prominent mathematicians to participate in the program. Mina Rees was the Head of the Mathematics Branch of the Office of Naval Research (ONR). She was one of a group which saw need for the development of "machine" mathematics and encouraged Curtiss to proceed with his program. She was instrumental in arranging substantial financial support by ONR for the INA project. In fact, ONR funded the major portion of the mathematical research program of INA. The machine development program was largely supported by the Air Force. Contributions to this program were also made by the Army. These governmental agencies played an important role in the formation of INA. There are several mathematicians to whom we are especially grateful for their help in the preparation of this volume. First, Olga Taussky-Todd, who was one of the original crew in 1947-48 and was a consultant to the NBS Applied Mathematics Division (AMD) from 1949 to 1957. Her vii wide knowledge of mathematics and mathematicians played an important part in the development of NBS-INA, as will become apparent in our history. In addition, her outstanding memory and her collection of INA photographs have been invaluable during the preparation of this history. We are also indebted to Marion I. Walter, who was at INA in 1952-53 for her extensive collection of INA photographs. We also acknowledge the permissions to reproduce published photographs which have been given by various organizations and individuals. We appreciate comments on drafts of our manuscripts by E. W. Cannon, C. R. De Prima, and J. H. Wilkinson. Finally we appreciate greatly the work of Churchill Eisenhart and Joan Rosenblatt who care- fully read our manuscript and tried to make m historians of science and of Shirley Bremer who collated and checked all the changes and corrections and acted as our representative with the NBS production staff who, imder the direction of Don Baker, Rebecca Pardee, and Ernestine Gladden, did a splendid job. M. R. Hestenes John Todd UCLA Caltech Los Angeles, CA 90024 Pasadena, CA 91125 viii CONTENTS Page FOREWORD iu PREFACE V CHAPTER I The Beginnings 1 The War Years - 1939-1945 2 The Post-War Years 3 CHAPTER II The Period Summer 1947 through Summer 1948 7 CHAPTER III The Period Fall 1948 through Spring 1949 11 CHAPTER IV The Period Summer 1949 through Summer 1950 17 CHAPTER V The Period Fall 1950 through Spring 1951 23 CHAPTER VI The Period Summer 1951 through Spring 1952 27 CHAPTER VII The Period Summer 1952 through Spring 1953 33 CHAPTER VIII The Period Summer 1953 through Spring 1954 39 CHAPTER IX Some Typical Projects 45 Hilbert Matrices and Related Topics 45 Gerschgorin Theorems and Related Results 47 Solutions of Systems of Linear Equations 48 REFERENCES 67 PHOTOGRAPHS AND CARTOONS 73 APPENDIX A. John Hamilton Curtiss 1909-77 A-1 APPENDIX B. Two Papers by John H. Curtiss B-1 APPENDIX C. TheSWAC C-1 APPENDIX D.
Recommended publications
  • Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976
    Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 Gene H. Golub; Dianne P. O'Leary SIAM Review, Vol. 31, No. 1. (Mar., 1989), pp. 50-102. Stable URL: http://links.jstor.org/sici?sici=0036-1445%28198903%2931%3A1%3C50%3ASHOTCG%3E2.0.CO%3B2-S SIAM Review is currently published by Society for Industrial and Applied Mathematics. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/siam.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Fri Aug 17 11:22:18 2007 SIAM REVIEW 0 1989 Society for Industrial and Applied Mathematics Vol.
    [Show full text]
  • REVIEWS and DESCRIPTIONS of TABLES and BOOKS the Numbers
    MATHEMATICS OF COMPUTATION Volume 65, Number 213, January 1996, Pages 429{443 S 0025-5718-96-00698-9 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS The numbers in brackets are assigned according to the American Mathematical Society classification scheme. The 1991 Mathematics Subject Classification can be found in the annual subject index of Mathematical Reviews starting with the December 1990 issue. 1[65-00, 41-00, 41A05, 41A21, 41A55, 41A65, 65C05, 65H05, 65T20, 73C50, 73V20]—Handbook of numerical analysis, Vol. III, P. G. Ciarlet and J. L. Lions (Editors), Techniques of scientific computing (Part 1), Numerical methods for solids (Part 1), Solution of equations in Rn (Part 2), North-Holland, 1 Amsterdam, 1994, x+778 pp., 24 2 cm, $154.25/Dfl. 270.00 This book contains three parts: 1) Techniques of Scientific Computing; 2) Nu- merical Methods for Solids; 3) Solution of Equations in Rn. Nevertheless, only the second part gets close to “numerical methods for large-scale computation”. The aims of the book are rather “constructive methods”, which are often the background to numerical methods. The first part is concerned with three aspects of approximation theory. First, Claude Brezinski provides an interesting historical perspective on interpolation, ap- proximation and numerical quadrature since the year 1611. His main contribution, however, is a survey on Pad´e approximation, written jointly with van Iseghen. The algebraic theory naturally elucidates the connections with orthogonal polynomi- als and continued fractions. The convergence theory contains, on the one hand, a complete theory for Stieltjes functions and, on the other hand, only convergence in capacity for the general case.
    [Show full text]
  • German Jews in the United States: a Guide to Archival Collections
    GERMAN HISTORICAL INSTITUTE,WASHINGTON,DC REFERENCE GUIDE 24 GERMAN JEWS IN THE UNITED STATES: AGUIDE TO ARCHIVAL COLLECTIONS Contents INTRODUCTION &ACKNOWLEDGMENTS 1 ABOUT THE EDITOR 6 ARCHIVAL COLLECTIONS (arranged alphabetically by state and then city) ALABAMA Montgomery 1. Alabama Department of Archives and History ................................ 7 ARIZONA Phoenix 2. Arizona Jewish Historical Society ........................................................ 8 ARKANSAS Little Rock 3. Arkansas History Commission and State Archives .......................... 9 CALIFORNIA Berkeley 4. University of California, Berkeley: Bancroft Library, Archives .................................................................................................. 10 5. Judah L. Mages Museum: Western Jewish History Center ........... 14 Beverly Hills 6. Acad. of Motion Picture Arts and Sciences: Margaret Herrick Library, Special Coll. ............................................................................ 16 Davis 7. University of California at Davis: Shields Library, Special Collections and Archives ..................................................................... 16 Long Beach 8. California State Library, Long Beach: Special Collections ............. 17 Los Angeles 9. John F. Kennedy Memorial Library: Special Collections ...............18 10. UCLA Film and Television Archive .................................................. 18 11. USC: Doheny Memorial Library, Lion Feuchtwanger Archive ...................................................................................................
    [Show full text]
  • ITS FIRST FIFTY YEARS Carl Β
    THE MATHEMATICAL ASSOCIATION OF AMERICA: ITS FIRST FIFTY YEARS Carl Β. Boyer Brooklyn College, CUNY Richard W. Feldmann Lycoming College Harry M. Gehman SUN Yat Buffalo Phillip S. Jones University of Michigan Kenneth O. May University of Toronto Harriet F. Montague SUNYat Buffalo Gregory H. Moore University of Toronto Robert A. Rosenbaum Wesleyan University Emory P. Starke Rutgers University Dirk J. Struik Massachusetts Institute of Technology THE MATHEMATICAL ASSOCIATION OF AMERICA: ITS FIRST FIFTY YEARS Kenneth O. May, editor University of Toronto, Canada Published and distributed by The Mathematical Association of America Copyright 1972 by THE MATHEMATICAL ASSOCIATION OF AMERICA (INCORPORATED) PREFACE The fiftieth anniversary of the founding of the Mathematical Association of America was celebrated at the 1965 summer meeting at Cornell University [MONTHLY 72, 1053-1059]. The invited addresses on that occasion dealing with the past, present, and future of the Association and of mathematics, were published in the fiftieth anniversary issue [MONTHLY 74, Num. !, Part II] under the editorship of Carl B. Allendoerfer. The historical addresses by A. A. Bennett, R. A. Rosenbaum, W. L. Duren, Jr., and P. S. Jones whetted appetites for a more complete story of the Association. Early in 1966, on a recommendation of the Committee on Publications, President R. L. Wilder appointed a Committee on the Preparation of a Fifty-Year History of the Association consisting of Carl B. Boyer, Kenneth O. May (Chairman), and Dirk J. Struik. An appropriation of one thousand dollars was set aside to meet incidental expenses. The Committee began its work with very ambitious plans, hoping to get financial support for interviewing older members of the Association and the preparation of special studies on particular aspects of the Association's work.
    [Show full text]
  • Notices of the American Mathematical
    OF THE AMERICAN MATHEMATICAL SOCIETY VOLUMf 12, NUMBER 2 ISSUE NO. 80 FEBRUARY 1965 cNotiaiJ OF THE AMERICAN MATHEMATICAL SOCIETY Edited by John W. Green and Gordon L. \Yalker CONTENTS MEETINGS Calendar of Meetings o o o o o o o o o • o o • o o o o o o o • o 0 o 0 o 0 • 0 • 0 0 • 0 0 184 Program of the Meeting in New York. o 0 o 0 o 0 0 • 0 o o o 0 0 0 0 • 0 0 0 0 0 • 185 Abstracts for the Meeting- Pages 209-216 PRELIMINARY ANNOUNCEMENTS OF MEETINGS • o o o o o o o o • o 0 • 0 • 0 • • • 188 ACTIVITIES OF OTHER ASSOCIATIONS •••• o o. o o o o • o o o •• o 0 0 0. o 0 0 0 0 191 LETTERS TO THE EDITOR • o ••••• o o • o o o o o • o ••• o •••• o o o •• o o • o o 192 MEMORANDA TO MEMBERS List of Retired Mathematicians 190 Increase in Page Charges o o ••• o •• o • o o o •••••• 0 ••• 0 0 0 •• 0 0 0 0 194 Journals in Microform • o •••• o 0 ••• o • o ••• 0 •• o ••••• 0 •• 0 • • • • 194 Backlog of Mathematics Research Journals 0 0 0. 0. 0 ••• 0 •• 0 •• 0.. 195 Corporate Members ••••••••••••• 0 • 0 0 0 0 •• 0 0 • 0 •• 0 0 •• 0 ••• 0 201 ASSISTANTSHIPS AND FELLOWSHIPS IN MATHEMATICS 1965-1966 0 ••• 0 • 0 196 NEW AMS PUBLICATIONS • o •• o •• o •••• o • o o ••••• o o o •• o o •• o • o • o • 197 PERSONAL ITEMS .••••• o •• o.
    [Show full text]
  • Winter 2013 Newsletter
    Volume 10, No. 1 Newsletter The Courant Institute of Mathematical Sciences at New York University 2013 Winter 2 Jinyang Li: Building 5 How can the mysterious Distributed Systems that connection between Bridge Applications and nature and mathematics Hardware be explained? It can’t, says Henry McKean 3 New Faculty 6 Winter 2013 Puzzle How Fair is a Fair Coin? 4 In the accounting software 7 The Generosity of Friends field, Anne-Claire McAllister’s Courant degree has made all the difference In this Issue: Jinyang Li: Building Distributed Systems That Bridge Applications and Hardware by M.L. Ball the hardware. When new hardware is built, without good systems Piccolo: Distributed Computation software it’s very clumsy to use and won’t reach the majority of using Shared In-memory State application programmers. It’s a careful balance between making your system very usable and maintaining extremely high performance,” Node-1 said Jinyang. Get, Put, Update (commutative) Jinyang’s Project Piccolo: Faster, more robust, and getting lots of notice When approaching a new project, Jinyang prefers a bottom-up PageRank Accumulate=sum Distrubuted in-memory state approach. “I like to take a very concrete piece of application that A: 1.35 B: 5.44 I really care about – like machine learning or processing a lot of C: 2.01 … text – and then look at the existing hardware and say, ‘We have lots of machines and they’re connected by a fast network and each of them has a lot of memory and a lot of disks,’” she said. “‘How can I enable that application to utilize this array of hardware? What is the Node-2 Node-3 glue, what is the infrastructure that’s needed? To make the challenges concrete, let me start by building this infrastructure that specifically can process a large amount of text really quickly.
    [Show full text]
  • Selected Papers
    Selected Papers Volume I Arizona, 1968 Peter D. Lax Selected Papers Volume I Edited by Peter Sarnak and Andrew Majda Peter D. Lax Courant Institute New York, NY 10012 USA Mathematics Subject Classification (2000): 11Dxx, 35-xx, 37Kxx, 58J50, 65-xx, 70Hxx, 81Uxx Library of Congress Cataloging-in-Publication Data Lax, Peter D. [Papers. Selections] Selected papers / Peter Lax ; edited by Peter Sarnak and Andrew Majda. p. cm. Includes bibliographical references and index. ISBN 0-387-22925-6 (v. 1 : alk paper) — ISBN 0-387-22926-4 (v. 2 : alk. paper) 1. Mathematics—United States. 2. Mathematics—Study and teaching—United States. 3. Lax, Peter D. 4. Mathematicians—United States. I. Sarnak, Peter. II. Majda, Andrew, 1949- III. Title. QA3.L2642 2004 510—dc22 2004056450 ISBN 0-387-22925-6 Printed on acid-free paper. © 2005 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America.
    [Show full text]
  • Implications for Understanding the Role of Affect in Mathematical Thinking
    Mathematicians and music: Implications for understanding the role of affect in mathematical thinking Rena E. Gelb Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2021 © 2021 Rena E. Gelb All Rights Reserved Abstract Mathematicians and music: Implications for understanding the role of affect in mathematical thinking Rena E. Gelb The study examines the role of music in the lives and work of 20th century mathematicians within the framework of understanding the contribution of affect to mathematical thinking. The current study focuses on understanding affect and mathematical identity in the contexts of the personal, familial, communal and artistic domains, with a particular focus on musical communities. The study draws on published and archival documents and uses a multiple case study approach in analyzing six mathematicians. The study applies the constant comparative method to identify common themes across cases. The study finds that the ways the subjects are involved in music is personal, familial, communal and social, connecting them to communities of other mathematicians. The results further show that the subjects connect their involvement in music with their mathematical practices through 1) characterizing the mathematician as an artist and mathematics as an art, in particular the art of music; 2) prioritizing aesthetic criteria in their practices of mathematics; and 3) comparing themselves and other mathematicians to musicians. The results show that there is a close connection between subjects’ mathematical and musical identities. I identify eight affective elements that mathematicians display in their work in mathematics, and propose an organization of these affective elements around a view of mathematics as an art, with a particular focus on the art of music.
    [Show full text]
  • RM Calendar 2017
    Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed.
    [Show full text]
  • Matical Society Was Held at Columbia University on Friday and Saturday, April 25-26, 1947
    THE APRIL MEETING IN NEW YORK The four hundred twenty-fourth meeting of the American Mathe­ matical Society was held at Columbia University on Friday and Saturday, April 25-26, 1947. The attendance was over 300, includ­ ing the following 300 members of the Society: C. R. Adams, C. F. Adler, R. P. Agnew, E.J. Akutowicz, Leonidas Alaoglu, T. W. Anderson, C. B. Allendoerfer, R. G. Archibald, L. A. Aroian, M. C. Ayer, R. A. Bari, Joshua Barlaz, P. T. Bateman, G. E. Bates, M. F. Becker, E. G. Begle, Richard Bellman, Stefan Bergman, Arthur Bernstein, Felix Bernstein, Lipman Bers, D. H. Blackwell, Gertrude Blanch, J. H. Blau, R. P. Boas, H. W. Bode, G. L. Bolton, Samuel Borofsky, J. M. Boyer, A. D. Bradley, H. W. Brinkmann, Paul Brock, A. B. Brown, G. W. Brown, R. H. Brown, E. F. Buck, R. C. Buck, L. H. Bunyan, R. S. Burington, J. C. Burkill, Herbert Busemann, K. A. Bush, Hobart Bushey, J. H. Bushey, K. E. Butcher, Albert Cahn, S. S. Cairns, W. R. Callahan, H. H. Campaigne, K. Chandrasekharan, J. O. Chellevold, Herman Chernoff, Claude Chevalley, Ed­ mund Churchill, J. A. Clarkson, M. D. Clement, R. M. Cohn, I. S. Cohen, Nancy Cole, T. F. Cope, Richard Courant, M. J. Cox, F. G. Critchlow, H. B. Curry, J. H. Curtiss, M. D. Darkow, A. S. Day, S. P. Diliberto, J. L. Doob, C. H. Dowker, Y. N. Dowker, William H. Durf ee, Churchill Eisenhart, Benjamin Epstein, Ky Fan, J.M.Feld, William Feller, F. G. Fender, A. D.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Methods of Conjugate Gradients for Solving Linear Systems
    Methods of Conjugate Gradients for Solving Linear Systems The advent of electronic computers in the middle of systematic way in order to compute the solution. These the 20th century stimulated a flurry of activity in devel- methods were finite, but required a rather large amount oping numerical algorithms that could be applied to of computational effort with work growing as the cube computational problems much more difficult than those of the number of unknowns. The second type of al- solved in the past. The work described in this paper [1] gorithm used “relaxation techniques” to develop a se- was done at the Institute for Numerical Analysis, a quence of iterates converging to the solution. Although part of NBS on the campus of UCLA [2]. This institute convergence was often slow, these algorithms could be was an incredibly fertile environment for the develop- terminated, often with a reasonably accurate solution ment of algorithms that might exploit the potential estimate, whenever the human “computers” ran out of of these new automatic computing engines, especially time. algorithms for the solution of linear systems and matrix The ideal algorithm would be one that had finite eigenvalue problems. Some of these algorithms are termination but, if stopped early, would give a useful classified today under the term Krylov Subspace approximate solution. Hestenes and Stiefel succeeded in Iteration, and this paper describes the first of these developing an algorithm with exactly these characteris- methods to solve linear systems. tics, the method of conjugate gradients. Magnus Hestenes was a faculty member at UCLA The algorithm itself is beautiful, with deep connec- who became associated with this Institute, and Eduard tions to optimization theory, the Pad table, and quadratic Stiefel was a visitor from the Eidgeno¨ssischen Technis- forms.
    [Show full text]