THE TOLERANCE of the FIELD SLUG Deroceras Reticulatum to FREEZING TEMPERATURES

Total Page:16

File Type:pdf, Size:1020Kb

THE TOLERANCE of the FIELD SLUG Deroceras Reticulatum to FREEZING TEMPERATURES CryoLetters 25, 187-194 (2004) Ó CryoLetters, c/o Royal Veterinary College, London NW1 0TU, UK THE TOLERANCE OF THE FIELD SLUG Deroceras reticulatum TO FREEZING TEMPERATURES R T Cook Kingston University, Kingston upon Thames, Surrey KT1 2EE, United Kingdom Abstract Cold hardiness of ectotherms has been widely studied in arthropods, but there is a more limited literature on the survival of molluscs at low temperatures. A number of intertidal species have been examined in detail, but terrestrial molluscs have largely been overlooked until recently. This paper reports results of laboratory experiments to evaluate the cold hardiness of the terrestrial slug, Deroceras reticulatum. The mean supercooling point (SCP) rose from -4.2°C in summer to -3.6°C in winter. The SCP that caused 50% mortality (LSCP50) remained constant at -4.7 to -4.8°C in both seasons, but slugs were able to survive the frozen state for longer in winter (LD50 of 31.8 minutes compared with 17.0 minutes in summer). Slug survival at freezing temperatures was prolonged to at least five hours when placed on a moist, absorbent substrate. D. reticulatum exhibits partial freeze tolerance, with an increased survival in winter. The results are discussed in relation to the slugs' natural environment. Keywords: cold hardiness, Deroceras, freezing, molluscs, slugs, supercooling INTRODUCTION In order to survive exposure to freezing temperatures, ectothermal organisms require physiological mechanisms to prevent or tolerate the formation of ice in their tissues. Such 'cold hardiness' has been reported in a number of invertebrates, and has been most extensively studied in arthropods (8, 17). Organisms that survive freezing temperatures have classically been categorised as either 'freeze susceptible' (also known as a 'freeze avoidance' strategy), in which body fluids undergo extensive supercooling without ice formation, or 'freeze tolerant' if the organism can tolerate the formation of extracellular ice in its tissues. However, other classifications have also been proposed to account for intermediate responses to low temperatures seen in a number of organisms (6, 16). Among gastropod molluscs, cold hardiness has been studied in intertidal species that are exposed to freezing temperatures for periods of up to a few hours at low tide (10), but relatively little is known about cold hardiness of terrestrial molluscs (4). The land snails Helix aspersa, H. pomatia and Arianta arbustorum have been classified as partially freeze tolerant, exhibiting a limited ability to supercool and survival of ice crystal formation in its tissues for between 40 minutes to a few hours (1, 4, 20). The few other species studied, Discus cronkhitei, Anguispira alternata, Gastrocopta armifera and Vallonia perspectiva are all small snails that have adopted a freeze avoidance strategy and can supercool to temperatures as low as -25°C (13, 15). Although closely related to pulmonate snails, terrestrial slugs possess two differences that are relevant in the context of survival at low temperatures. The first is that, despite some reports to the contrary (eg 9), they are not thought to hibernate in winter (18, 19), although 187 activity does decline with temperature and usually ceases as it approaches 0°C (12). The second is that, since they lack a shell into which they can retreat, they are susceptible to inoculative freezing. A freeze avoidance strategy would therefore seem an unlikely mechanism to survive freezing temperatures. The field slug, Deroceras reticulatum, is a common, geographically widespread pest of agricultural and horticultural crops in moist, temperate environments (19), but little is known about its over-wintering behaviour, survival and ecology. It has often been assumed that adults are killed during very cold winters, with subsequent generations being supplemented from over-wintering eggs (18). This slug species appears to be well adapted to cold temperatures, and is active at temperatures of around 0°C (12, 21). Furthermore, it has also been reported that D. reticulatum adults have a limited ability to survive freezing (5). However, personal observations (unpublished) revealed that field slugs survived freezing overnight in boxes of soil within an arable field, suggesting a greater tolerance of freezing. In order to provide further insights in to the cold hardiness of adult D. reticulatum at low temperatures, work was undertaken to investigate the supercooling points and survival of these slugs in winter and summer, as well as some observations of their behaviour in laboratory conditions. MATERIALS AND METHODS Adult slugs, weighing between 30 mg and 75 mg, were collected from gardens and a cemetery in Surrey, UK, on the day that they were to be used in the experiments. They were housed in an incubator set at 10°C for a maximum duration of four hours before use to minimize any possibility of becoming acclimatised to the artificial environment. For the purpose of this work, winter was defined as between November and February, and summer was defined as from May to August. Three experiments were performed over a 16-month period from November 1999 to February 2001. Experiment 1: supercooling points and lethal freezing temperatures This experiment was designed to measure the temperature at which slugs froze in winter and summer, their survival, and to identify if the rate of cooling influences the supercooling point (SCP). Individual slugs were placed in a 1 ml microfuge tube from which the closed end had been cut open and sealed with a fine cotton mesh to allow air circulation. The slug was gently pushed in to the bottom of the tube which was plugged with cotton wool to hold the slug firmly in place. Two miniature catheter thermistor probes (Grant Instruments (Cambridge) Ltd, UK) were then gently inserted into the tube so that they pressed against the slug, and were held in place in the tube with insulation tape. Consequently, the slug was firmly confined in the tube, allowing very little movement and with the temperature probes constantly pressed against the body. The tube was placed in a 12 x 9 cm plastic bag which was suspended in a programmable cooling bath (Julabo Labortechnik GmbH, Seelbach, Germany, model HP-F32) containing Thermistor H5S oil (Julabo Labortechnik GmbH), ensuring that no oil entered the bag. A third thermistor in a second empty microfuge tube was also placed in the plastic bag so that the air temperature in the tube could be monitored. The thermistor probes were connected to a Squirrel SQ1002 data logger (Grant Instruments (Cambridge) Ltd, UK), and the SCP of the slug was recorded as the temperature at which the latent heat of crystallization was first detected. Once the slugs had frozen, the temperature of the cooling bath oil was maintained so that the air temperature in the microfuge tube was at, or just below, the slug’s SCP for five minutes. The cooling bath was programmed to produce a cooling and warming rate of the air in the microfuge tube at 1 deg C per minute or 1 deg C per five minutes. Once the body temperature of the slug had returned to 5°C, the tube containing the slug was taken out of the cooling bath, 188 and the cotton wool plug and thermistor probes were removed. The tube was placed in a clear plastic box lined with moist tissue and placed in a fridge at 5°C for one hour prior to being placed in an incubator at 15°C, when the condition of the slug was noted. The survival and physical condition of the slug was then monitored over the next five days. Although a five day duration does not conclusively demonstrate lack of a detrimental effect from freezing, it was sufficient to identify any acute damage. Indeed, all slugs that exhibited signs of damage, such as limited locomotory ability, died within the five day period. A control slug was placed in a sealed and plugged microfuge tube in an incubator with an air temperature of 15°C for the duration that the slugs were contained within the cooling bath. In addition, the data were submitted to probit analysis to estimate the SCP at which fifty percent of the slugs survived, without any apparent damage, for five days after being frozen for five minutes (lethal supercooling point, or LSCP50) in both summer and winter. Experiment 2: duration of survival The second experiment was designed to assess the duration that the slugs could withstand in the frozen state in winter and in summer. Slugs were cooled at a rate of 1 deg C per minute, using the same method as above, but maintaining the air temperature to which the slugs were exposed at between 0.5°C and 1°C below their SCP for 5, 15, 30, 45 or 60 minutes. By maintaining the temperature at just below the SCP for each slug, the proportion of body tissue ice formed was likely to be comparable for all slugs frozen for the same time. The duration at which fifty percent of the slugs survived in the frozen state (lethal duration, or LD50) was calculated from the results by probit analysis. As in experiment 1, only slugs that remained active and apparently unharmed for five days after freezing were considered to have survived the treatment. Experiment 3: behaviour The final experiment involved filming groups of between four and six adult slugs on fourteen separate occasions (sixty slugs used in total) when the air temperature was reduced from 100C to –90C. The slugs were placed in plastic, open-topped boxes (14 x 7.5 x 5 cm) which were filled to a depth of 3.5 cm with florists’ oasis material soaked with water. The upper edges of the box were greased with petroleum jelly to which salt was applied as a barrier to prevent slugs from escaping.
Recommended publications
  • Emergence of Third-Stage Larvae of Umingmakstrongylus Pallikuukensis from Three Gastropod Intermediate Host Species
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 8-2000 Emergence of Third-Stage Larvae of Umingmakstrongylus pallikuukensis from Three Gastropod Intermediate Host Species Susan K. Kutz Western College of Veterinary Medicine Eric P. Hoberg United States Department of Agriculture, Agricultural Research Service, [email protected] Lydden Polley Western College of Veterinary Medicine, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Kutz, Susan K.; Hoberg, Eric P.; and Polley, Lydden, "Emergence of Third-Stage Larvae of Umingmakstrongylus pallikuukensis from Three Gastropod Intermediate Host Species" (2000). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 334. https://digitalcommons.unl.edu/parasitologyfacpubs/334 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Parasitol., 86(4), 2000, p. 743±749 q American Society of Parasitologists 2000 EMERGENCE OF THIRD-STAGE LARVAE OF UMINGMAKSTRONGYLUS PALLIKUUKENSIS FROM THREE GASTROPOD INTERMEDIATE HOST SPECIES S. J. Kutz, E. P. Hoberg*, and L. Polley Department of Veterinary Microbiology, Western College of Veterinary Medicine, 52 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B4 ABSTRACT: We investigated the emergence of third-stage larvae (L3) of Umingmakstrongylus pallikuukensis from the slugs Deroceras laeve, Deroceras reticulatum, and the snail Catinella sp.
    [Show full text]
  • 0102 Schmutztitel
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arianta Jahr/Year: 2000 Band/Volume: 3 Autor(en)/Author(s): Reischütz Peter L. Artikel/Article: Die Nacktschnecken des Gesäuses (Ennstal, Steiermark). 52-55 ©Naturhistorisches Museum in Wien Austria, download unter www.biologiezentrum.at Die Nacktschnecken des Gesäuses (Ennstal, Steiermark) Peter L. Reischütz1 Summary The knowledge of the slug fauna of Austria is very poor, especially of the Alpine areas. A small collection of slugs from the Gesäuse (Ennstal, Gesäuse, Styria, Austria) was an impulse to give a survey of our knowledge. Keywords: Gastropoda, slugs, Austria. Einleitung Vor kurzem erhielt ich von H. Sattmann (Naturhistorisches Museum Wien) eine kleine Nacktschneckenaufsammlung aus dem Johnsbachtal zur Bestimmung. Dies wurde zum Anlaß genommen, die Kenntnisse über dieses Gebiet zusammenzufassen, weil unser Wissen noch immer sehr beschränkt ist und weil einige Arten vorkommen, die aus systematischer und nomenklatorischer Sicht interessant und auch problematisch sind. Wegen der angeblichen Schwierigkeiten beim Bestimmen und wegen der Mängel in der Methodik des Sammelns wurden die wenigen gefundenen Nacktschnecken in der Ver- gangenheit geflissentlich übersehen oder unter horrenden Fehlbestimmungen publiziert [vergl. KLEMM (1954), wo Arion distinctus MABILLE 1867 als Arion hortensis (det. H. FRANZ) aus dem Hochgebirge gemeldet wird - eine Verwechslung mit Arion fuscus (O. F. MÜLLER 1774) (= A. subfuscus aut. non DRAPARNAUD 1805)]. Eine erste zusammen- fassende Darstellung finden wir bei REISCHÜTZ (1986) (mit diesem Datum ist allerdings auch die Nacktschneckenforschung in Österreich sanft entschlafen). Fundorte und Bestimmung der von H. Sattmann erhaltenen Nacktschnecken Pfarrer Alm, ca.1300 m ü.M., Juli 1999.
    [Show full text]
  • Gastropoda: Stylommatophora)1 John L
    EENY-494 Terrestrial Slugs of Florida (Gastropoda: Stylommatophora)1 John L. Capinera2 Introduction Florida has only a few terrestrial slug species that are native (indigenous), but some non-native (nonindigenous) species have successfully established here. Many interceptions of slugs are made by quarantine inspectors (Robinson 1999), including species not yet found in the United States or restricted to areas of North America other than Florida. In addition to the many potential invasive slugs originating in temperate climates such as Europe, the traditional source of invasive molluscs for the US, Florida is also quite susceptible to invasion by slugs from warmer climates. Indeed, most of the invaders that have established here are warm-weather or tropical species. Following is a discus- sion of the situation in Florida, including problems with Figure 1. Lateral view of slug showing the breathing pore (pneumostome) open. When closed, the pore can be difficult to locate. slug identification and taxonomy, as well as the behavior, Note that there are two pairs of tentacles, with the larger, upper pair ecology, and management of slugs. bearing visual organs. Credits: Lyle J. Buss, UF/IFAS Biology as nocturnal activity and dwelling mostly in sheltered Slugs are snails without a visible shell (some have an environments. Slugs also reduce water loss by opening their internal shell and a few have a greatly reduced external breathing pore (pneumostome) only periodically instead of shell). The slug life-form (with a reduced or invisible shell) having it open continuously. Slugs produce mucus (slime), has evolved a number of times in different snail families, which allows them to adhere to the substrate and provides but this shell-free body form has imparted similar behavior some protection against abrasion, but some mucus also and physiology in all species of slugs.
    [Show full text]
  • Impact of Dietary Diversification on Invasive Slugs and Biological Control with Notes on Slug Species of Kentucky
    University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2010 IMPACT OF DIETARY DIVERSIFICATION ON INVASIVE SLUGS AND BIOLOGICAL CONTROL WITH NOTES ON SLUG SPECIES OF KENTUCKY Anna K. Thomas University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Thomas, Anna K., "IMPACT OF DIETARY DIVERSIFICATION ON INVASIVE SLUGS AND BIOLOGICAL CONTROL WITH NOTES ON SLUG SPECIES OF KENTUCKY" (2010). University of Kentucky Master's Theses. 35. https://uknowledge.uky.edu/gradschool_theses/35 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS IMPACT OF DIETARY DIVERSIFICATION ON INVASIVE SLUGS AND BIOLOGICAL CONTROL WITH NOTES ON SLUG SPECIES OF KENTUCKY Increasing introductions of non-native terrestrial slugs (Mollusca: Gastropoda) are a concern to North American regulatory agencies as these generalists impact the yield and reduce the aesthetic value of crop plants. Understanding how the increase in diversification in North American cropping systems affects non-native gastropods and finding effective biological control options are imperative for pest management; however, little research has been done in this area. This study tested the hypothesis that dietary diversification affects the biological control capacity of a generalist predator and allows the slug pest Deroceras reticulatum (Müller) (Stylommatophora: Agriolimacidae) to more effectively fulfill its nutritional requirements.
    [Show full text]
  • Slugs (Of Florida) (Gastropoda: Pulmonata)1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-087 Slugs (of Florida) (Gastropoda: Pulmonata)1 Lionel A. Stange and Jane E. Deisler2 Introduction washed under running water to remove excess mucus before placing in preservative. Notes on the color of Florida has a depauparate slug fauna, having the mucus secreted by the living slug would be only three native species which belong to three helpful in identification. different families. Eleven species of exotic slugs have been intercepted by USDA and DPI quarantine Biology inspectors, but only one is known to be established. Some of these, such as the gray garden slug Slugs are hermaphroditic, but often the sperm (Deroceras reticulatum Müller), spotted garden slug and ova in the gonads mature at different times (Limax maximus L.), and tawny garden slug (Limax (leading to male and female phases). Slugs flavus L.), are very destructive garden and greenhouse commonly cross fertilize and may have elaborate pests. Therefore, constant vigilance is needed to courtship dances (Karlin and Bacon 1961). They lay prevent their establishment. Some veronicellid slugs gelatinous eggs in clusters that usually average 20 to are becoming more widely distributed (Dundee 30 on the soil in concealed and moist locations. Eggs 1977). The Brazilian Veronicella ameghini are round to oval, usually colorless, and sometimes (Gambetta) has been found at several Florida have irregular rows of calcium particles which are localities (Dundee 1974). This velvety black slug absorbed by the embryo to form the internal shell should be looked for under boards and debris in (Karlin and Naegele 1958).
    [Show full text]
  • Mating Behaviour in the Terrestrial Slug Deroceras Gorgonium: Is Extreme Morphology Associated with Extreme Behaviour?
    Animal Biology, Vol. 57, No. 2, pp. 197-215 (2007) Koninklijke Brill NV, Leiden, 2007. Also available online - www.brill.nl/ab Mating behaviour in the terrestrial slug Deroceras gorgonium: is extreme morphology associated with extreme behaviour? HEIKE REISE 1,∗, STEFANIE VISSER 1, JOHN M.C. HUTCHINSON 2 1 Staatliches Museum für Naturkunde Görlitz, PF 300154, 02806 Görlitz, Germany 2 Max-Planck-Institut für Bildungsforschung, Lentzeallee 94, 14195 Berlin, Germany Abstract—Mating in Deroceras consists of an investigation phase (precourtship), then a long courtship involving mutual stroking with the extruded sarcobelum, then sperm exchange (copulation). The penial gland, if present, everts over the partner’s skin during copulation: this is hypothesised to apply a secretion manipulating the partner to use received sperm. Deroceras gorgonium has a particularly large penial gland divided into many finger-like branches. We studied D. gorgonium mating behaviour in the hope of further indications of the gland’s function. Precourtship and courtship together last longer than in other Deroceras (ca. 6 h to >9 h); precourtship is highly variable, often with many bouts of different behaviours, including seemingly inactive phases. During most of the courtship partners remain apart waving their particularly long, pointed sarcobela; only at a later stage do the tips of these contact the partner. This waving alternates with circling for half a turn. For the first time in Deroceras we observed the sarcobelum transferring a secretion. The copulation is amongst the fastest: genital eversion and sperm exchange occur within 1 s, and slugs separate 18-25 s later. The penial gland is everted immediately after sperm exchange, but, surprisingly, is often spread underneath the partner rather than over its back and, if on top, is not always fully spread over the partner’s body.
    [Show full text]
  • A Biography of an Invasive Terrestrial Slug: the Spread, Distribution and Habitat of Deroceras Invadens
    A peer-reviewed open-access journal NeoBiota 23: 17–64 (2014)A biography of an invasive terrestrial slug, Deroceras invadens 17 doi: 10.3897/neobiota.23.7745 RESEARCH ARTICLE NeoBiota http://neobiota.pensoft.net/ Advancing research on alien species and biological invasions A biography of an invasive terrestrial slug: the spread, distribution and habitat of Deroceras invadens John M.C. Hutchinson1, Heike Reise1, David G. Robinson2 1 Senckenberg Museum of Natural History at Görlitz, Am Museum 1, 02826 Görlitz, Germany 2 USDA APHIS PPQ National Malacology Laboratory, Academy of Natural Sciences, 1900 Franklin Parkway, Phila- delphia, PA 19103, USA Corresponding author: John M.C. Hutchinson ([email protected]) Academic editor: Ingolf Kühn | Received 17 April 2014 | Accepted 10 June 2014 | Published 2 September 2014 Citation: Hutchinson JMC, Reise H, Robinson DG (2014) A biography of an invasive terrestrial slug: the spread, distribution and habitat of Deroceras invadens. NeoBiota 23: 17–64. doi: 10.3897/neobiota.23.7745 Abstract The article reviews distribution records of Deroceras invadens (previously called D. panormitanum and D. caruanae), adding significant unpublished records from the authors’ own collecting, museum samples, and interceptions on goods arriving in the U.S.A. By 1940 D. invadens had already arrived in Britain, Denmark, California, Australia and probably New Zealand; it has turned up in many further places since, including remote oceanic islands, but scarcely around the eastern Mediterranean (Egypt and Crete are the exceptions), nor in Asia. Throughout much of the Americas its presence seems to have been previously overlooked, probably often being mistaken for D. laeve. New national records include Mexico, Costa Rica, and Ecuador, with evidence from interceptions of its presence in Panama, Peru, and Kenya.
    [Show full text]
  • Research Journal of Pharmaceutical, Biological and Chemical Sciences
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Impacts of the plant fertilizer, Caselio on the slug, Deroceras reticulatum (Gastropoda, Stylommatophora): laboratory studies. Hoda H Abd-El Azeem, and Sherin K Sheir*. Zoology Department, Faculty of Science, Menoufia University, Egypt. ABSTRACT The pest slugs have serious impacts on the world`s economy as a crop pests. So, the biological impacts of Caselio, the plant fertilizer (PMR) on the slug, Deroceras reticulatum were studied. Slugs were collected from infested places, El-Menoufia Province, Egypt. Slugs were exposed to 200, 500 and 800 µl/l of the fertilizer (PMR) for 14 days. Histology of the skin, foot, digestive gland, and intestine was investigated. In addition to cholinesterase in foot and lactate dehydrogenase activities in skin were measured. Histological alterations were observed in all investigated tissues/organs after exposure to all concentrations of PMR. Some of pathological signs were cellular degeneration, necrosis, inflammatory responses and leaky intestine (gaps). Exposure to PMR caused significant decrease in cholinesterase of slugs` foot than controls (P = 0.01) and significant increase lactate dehydrogenase in the skin of exposed slugs than the controls. In conclusion, Deroceras reticulatum were sensitive to PMR exposure and caused severe damage in the investigated tissues/organs and impacted the slugs’ mobility and feeding. So, it can be used as a molluscicide for the slug, Deroceras reticulatum. Keywords: Deroceras reticulatum, Caselio, histology, LDH and cholinesterase. *Corresponding author January–February 2018 RJPBCS 9(1) Page No. 386 ISSN: 0975-8585 INTRODUCTION The term slug is applied to molluscan animals that have no external shell.
    [Show full text]
  • Deroceras Invadens (Pulmonata: Agriolimacidae) and Other Synanthropic Slugs in the Southwest Corner of Poland
    FOLIA Folia Malacol. 23(4): 301–307 MALACOLOGICA ISSN 1506-7629 The Association of Polish Malacologists Faculty of Biology, Adam Mickiewicz University Bogucki Wydawnictwo Naukowe Poznań, December 2015 http://dx.doi.org/10.12657/folmal.023.026 AN INVASION FROM GERMANY: DEROCERAS INVADENS (PULMONATA: AGRIOLIMACIDAE) AND OTHER SYNANTHROPIC SLUGS IN THE SOUTHWEST CORNER OF POLAND JOHN M. C. HUTCHINSON*, HEIKE REISE Senckenberg Museum für Naturkunde Görlitz, Am Museum 1, 02826 Görlitz, Germany (e-mail: [email protected]) *corresponding author ABSTracT: Ten towns in the southwest corner of Poland within 57 km of the German border were surveyed for slugs. Deroceras invadens was found only in the four westernmost towns. In Zgorzelec, which was surveyed more intensively than the other towns, it occurs widely but only sporadically. Although D. invadens had been known in the adjacent German town of Görlitz since 1991, hitherto the only Polish record was from Wrocław, 140 km to the east. This pattern suggests a new colonisation across the border. Amongst the other species, one surprise was the rarity of Deroceras reticulatum in several towns, and another that Arion fuscus was common in one town but not found in any of the others. Records of Deroceras praecox extend its known range in Poland further west. Contrary to expectations from the literature, Deroceras sturanyi was adult in spring and reproducing at a small size typical of Deroceras laeve. KEY WORDS: invasive species, urban fauna, Arion distinctus, A. fasciatus, A. fuscus, A. lusitanicus, A. rufus, A. silvaticus, Boettgerilla pallens, Deroceras laeve, D. invadens, D. praecox, D. reticulatum, D. sturanyi, Limacus flavus, Limax maximus, Oberlausitz, Lower Silesia, Dolny Śląsk, life cycle INTRODUCTION Deroceras invadens Reise, Hutchinson, Schunack ing time for a species to reach pockets of suitable et Schlitt, 2011 (previously known as Deroceras pa­ habitat.
    [Show full text]
  • Slug and Snail Biology
    ____________________________________________________" Hawaii Island Rat Lungworm Working Group Rat Lungworm IPM Daniel K. Inouye College of Pharmacy RLWL-5 University of Hawaii, Hilo Slug and Snail Biology The focus is primarily on non-native, terrestrial slugs and snails, however, the aquatic apple snail Pomacea canaliculata should also be considered as it is a pest on all the islands except Molokai and Lanai and is often found in the loʻi. Another aquatic snail, Pila conica is present on Molokai. Both of these species are in the Ampullariidae family. Standards Addressed: 3-LS2 Ecosystems: Interactions, Energy, and Dynamics •! 3- LS2-1. Construct an argument that some animals form groups that help members survive. 4-PS4-1 Waves •! Develop a model of waves to describe patterns in terms of amplitude and w avelength and that waves can cause objects to move. 4-LS1 From Molecules to Organisms: Structures and Processes •! 4- LS1-1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. •! 4- LS1-2. Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways. 5- PS3 Energy •! Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun. 5-LS2 Ecosystems: Interactions, Energy, and Dynamics ! 1 •! 5- LS2-1. Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. 5-ESS3 Earth and Human Activity •! 5- ESS3-1.
    [Show full text]
  • Student Report No. 43 Utilising the Patchy Distribution of Slugs To
    September 2019 Student Report No. 43 Utilising the patchy distribution of slugs to optimise targeting of control: improved sustainability through precision application Emily Forbes1 1Harper Adams University, Edgmond, Newport, Shropshire TF10 8NB Supervisor: Keith Walters This is the final report of a PhD project (2140009118) that ran from September 2015 to September 2018. The work was funded by an AHDB contract for £68,577. While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law, the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document. Reference herein to trade names and proprietary products without stating that they are protected does not imply that they may be regarded as unprotected and thus free for general use. No endorsement of named products is intended, nor is any criticism implied of other alternative, but unnamed, products. AHDB Cereals & Oilseeds is a part of the Agriculture and Horticulture Development Board (AHDB). CONTENTS 1. ABSTRACT .......................................................................................................................5 2. INTRODUCTION ...............................................................................................................6
    [Show full text]
  • Snail and Slug Dissection Tutorial: Many Terrestrial Gastropods Cannot Be
    IDENTIFICATION OF AGRICULTURALLY IMPORTANT MOLLUSCS TO THE U.S. AND OBSERVATIONS ON SELECT FLORIDA SPECIES By JODI WHITE-MCLEAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 1 © 2012 Jodi White-McLean 2 To my wonderful husband Steve whose love and support helped me to complete this work. I also dedicate this work to my beautiful daughter Sidni who remains the sunshine in my life. 3 ACKNOWLEDGMENTS I would like to express my sincere gratitude to my committee chairman, Dr. John Capinera for his endless support and guidance. His invaluable effort to encourage critical thinking is greatly appreciated. I would also like to thank my supervisory committee (Dr. Amanda Hodges, Dr. Catharine Mannion, Dr. Gustav Paulay and John Slapcinsky) for their guidance in completing this work. I would like to thank Terrence Walters, Matthew Trice and Amanda Redford form the United States Department of Agriculture - Animal and Plant Health Inspection Service - Plant Protection and Quarantine (USDA-APHIS-PPQ) for providing me with financial and technical assistance. This degree would not have been possible without their help. I also would like to thank John Slapcinsky and the staff as the Florida Museum of Natural History for making their collections and services available and accessible. I also would like to thank Dr. Jennifer Gillett-Kaufman for her assistance in the collection of the fungi used in this dissertation. I am truly grateful for the time that both Dr. Gillett-Kaufman and Dr.
    [Show full text]