Eight(Y) Mathematical Questions on Fluids and Structures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Finite Element Methods for the Simulation of Incompressible Flows
Weierstrass Institute for Applied Analysis and Stochastics Finite Element Methods for the Simulation of Incompressible Flows Volker John Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 Outline of the Lectures 1 The Navier–Stokes Equations as Model for Incompressible Flows 2 Function Spaces For Linear Saddle Point Problems 3 The Stokes Equations 4 The Oseen Equations 5 The Stationary Navier–Stokes Equations 6 The Time-Dependent Navier–Stokes Equations – Laminar Flows Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 2 (151) 1 A Model for Incompressible Flows • conservation laws ◦ conservation of linear momentum ◦ conservation of mass • flow variables ◦ r(t;x) : density [kg=m3] ◦ v(t;x) : velocity [m=s] ◦ P(t;x) : pressure [N=m2] assumed to be sufficiently smooth in • W ⊂ R3 • [0;T] Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 3 (151) 1 Conservation of Mass • change of fluid in arbitrary volume V ¶ Z Z Z − r dx = rv · n ds = ∇ · (rv) dx ¶t V ¶V V | {z } | {z } mass transport through bdry • V arbitrary =) continuity equation rt + ∇ · (rv) = 0 • incompressibility( r = const) ∇ · v = 0 Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 4 (151) • acceleration: using first order Taylor series expansion in time (board) dv (t;x) = ¶ v(t;x) + (v(t;x) · ∇)v(t;x) dt t movement of a particle 1 Newton’s Second Law of Motion • Newton’s second law of motion net force = mass × acceleration Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. -
Simulation of Turbulent Flows
Simulation of Turbulent Flows • From the Navier-Stokes to the RANS equations • Turbulence modeling • k-ε model(s) • Near-wall turbulence modeling • Examples and guidelines ME469B/3/GI 1 Navier-Stokes equations The Navier-Stokes equations (for an incompressible fluid) in an adimensional form contain one parameter: the Reynolds number: Re = ρ Vref Lref / µ it measures the relative importance of convection and diffusion mechanisms What happens when we increase the Reynolds number? ME469B/3/GI 2 Reynolds Number Effect 350K < Re Turbulent Separation Chaotic 200 < Re < 350K Laminar Separation/Turbulent Wake Periodic 40 < Re < 200 Laminar Separated Periodic 5 < Re < 40 Laminar Separated Steady Re < 5 Laminar Attached Steady Re Experimental ME469B/3/GI Observations 3 Laminar vs. Turbulent Flow Laminar Flow Turbulent Flow The flow is dominated by the The flow is dominated by the object shape and dimension object shape and dimension (large scale) (large scale) and by the motion and evolution of small eddies (small scales) Easy to compute Challenging to compute ME469B/3/GI 4 Why turbulent flows are challenging? Unsteady aperiodic motion Fluid properties exhibit random spatial variations (3D) Strong dependence from initial conditions Contain a wide range of scales (eddies) The implication is that the turbulent simulation MUST be always three-dimensional, time accurate with extremely fine grids ME469B/3/GI 5 Direct Numerical Simulation The objective is to solve the time-dependent NS equations resolving ALL the scale (eddies) for a sufficient time -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Hydraulics Manual Glossary G - 3
Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B. -
Mechanical Engineering Department Nazarbayev University
Nazarbayev University, School of Engineering Bachelor of Mechanical Engineering OPTIMUM 2D GEOMETRIES THAT MINIMIZE DRAG FOR LOW REYNOLDS NUMBER FLOW Final Capstone Project Report By: Ilya Lutsenko Manarbek Serikbay Principal Supervisor: Dr.Eng. Konstantinos Kostas Dr.Eng. Marios Fyrillas April 2017 MECHANICAL ENGINEERING DEPARTMENT NAZARBAYEV UNIVERSITY Declaration Form We hereby declare that this report entitled “OPTIMUM 2D GEOMETRIES THAT MINIMIZE DRAG FOR LOW REYNOLDS NUMBER FLOW” is the result of our own project work except for quotations and citations which have been duly acknowledged. We also declare that it has not been previously or concurrently submitted for any other degree at Nazarbayev University. ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Name: Date: ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Name: Date: II MECHANICAL ENGINEERING DEPARTMENT NAZARBAYEV UNIVERSITY Abstract In this work, a two-dimensional Oseen’s approximation for Navier-Stokes equations is to be studied. As the theory applies only to low Reynolds numbers, the results are focused in this region of the flow regime, which is of interest in flows appearing in bioengineering applications. The investigation is performed using a boundary element formulation of the Oseen’s equation implemented in Matlab software package. The results are compared with simulations performed in COMSOL software package using a finite element approach for the full Navier-Stokes equations under the assumption of laminar and steady flow. Furthermore, experimental and numerical data from pertinent literature for the flow over a cylinder are used to verify the obtained results. The second part of the project employs the boundary element code in an optimization procedure that aims at drag minimization via body-shape modification with specific area constraints. The optimization results are validated with the aid of finite element simulations in COMSOL. -
An Experimental Test for the Existence of the Euler Wake Velocity, Validating Eulerlet Theory by Using a Bluff Body in a Low-Speed Wind Tunnel
An experimental test for the existence of the Euler wake velocity, validating Eulerlet theory by using a bluff body in a low-speed wind tunnel By Kiran Chalasani (B. Eng., M.Sc.) Ph.D. Thesis 2020 An experimental test for the existence of the Euler wake velocity, validating Eulerlet theory by using a bluff body in a low-speed wind tunnel Kiran Chalasani School of Computing, Science, and Engineering University of Salford, Manchester, UK Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy, July 2020 ii Abstract The application of manoeuvrability problems in aerodynamics mainly works for Reynolds average Navier-Stokes equations particularly for a uniform, steady flow past a fixed body. Further, consider large Reynolds number such that the flow is not turbulent, and the boundary layer is negligibly small and the impermeability boundary condition holds. Instead of using standard techniques and theory for describing the problem, a new method is employed based upon the concept of matching two different Green’s integral representations over a common boundary, one given by approximations valid in the near-field and the other by approximations in the far-field such that, a near-field Euler flow is matched to a far-field Oseen flow. Far from the body, linearise the velocity to the uniform stream yielding Oseen flow to leading order and match the near-field Euler and far-field Oseen flow on a common matching boundary. In particular, match the Green’s integral representations that use Green’s functions which are point force solutions. This gives new Green’s functions which we call Eulerlets and are obtained by collapsing the diffuse wake of the corresponding Oseenlets onto a wake line represented by Heaviside and delta functions. -
Computational Turbulent Incompressible Flow
This is page i Printer: Opaque this Computational Turbulent Incompressible Flow Applied Mathematics: Body & Soul Vol 4 Johan Hoffman and Claes Johnson 24th February 2006 ii This is page iii Printer: Opaque this Contents I Overview 4 1 Main Objective 5 2 Mysteries and Secrets 7 2.1 Mysteries . 7 2.2 Secrets . 8 3 Turbulent flow and History of Aviation 13 3.1 Leonardo da Vinci, Newton and d'Alembert . 13 3.2 Cayley and Lilienthal . 14 3.3 Kutta, Zhukovsky and the Wright Brothers . 14 4 The Navier{Stokes and Euler Equations 19 4.1 The Navier{Stokes Equations . 19 4.2 What is Viscosity? . 20 4.3 The Euler Equations . 22 4.4 Friction Boundary Condition . 22 4.5 Euler Equations as Einstein's Ideal Model . 22 4.6 Euler and NS as Dynamical Systems . 23 5 Triumph and Failure of Mathematics 25 5.1 Triumph: Celestial Mechanics . 25 iv Contents 5.2 Failure: Potential Flow . 26 6 Laminar and Turbulent Flow 27 6.1 Reynolds . 27 6.2 Applications and Reynolds Numbers . 29 7 Computational Turbulence 33 7.1 Are Turbulent Flows Computable? . 33 7.2 Typical Outputs: Drag and Lift . 35 7.3 Approximate Weak Solutions: G2 . 35 7.4 G2 Error Control and Stability . 36 7.5 What about Mathematics of NS and Euler? . 36 7.6 When is a Flow Turbulent? . 37 7.7 G2 vs Physics . 37 7.8 Computability and Predictability . 38 7.9 G2 in Dolfin in FEniCS . 39 8 A First Study of Stability 41 8.1 The linearized Euler Equations . -
Introduction to Turbulent Flow
CBE 6333, R. Levicky 1 Introduction to Turbulent Flow Turbulent Flow. In turbulent flow, the velocity components and other variables (e.g. pressure, density - if the fluid is compressible, temperature - if the temperature is not uniform) at a point fluctuate with time in an apparently random fashion. In general, turbulent flow is time-dependent, rotational, and three dimensional – thus, methods such as developed for potential flow in handout 13 do not work. For instance, measurement of the velocity component v1 at some stationary point in the flow may produce a plot as shown in Figure 1. In Figure 1, the velocity can be regarded as consisting of an average value v1 indicated by the dashed line, plus a random fluctuation v1' v1(t) = v1 (t) + v1'( t) (1) Figure 1 Similarly, other variables may also fluctuate, for example p(t) = p (t) + p'( t) (2) ρ(t) = ρ (t) + ρ'( t) (3) The overscore denotes average values and the prime denotes fluctuations. Turbulence will always occur for sufficiently high Re numbers, regardless of the geometry of flow under consideration. The origin of turbulence rests in small perturbations imposed on the flow; for instance, by wall roughness, by small variations in fluid density, by mechanical vibrations, etc. At low Re numbers such disturbances are damped out by the fluid viscosity and the flow remains laminar, but at high Re (when convective momentum transport dominates over viscous forces) they can grow and propagate, giving rise to the chaotic phenomena perceived as turbulence. Turbulent flows can be very difficult to analyze. In this handout, some of the simplest concepts pertinent to turbulent flows are introduced. -
Wind Power Meteorology. Part I: Climate and Turbulence 3
WIND ENERGY Wind Energ., 1, 2±22 (1998) Review Wind Power Meteorology. Article Part I: Climate and Turbulence Erik L. Petersen,* Niels G. Mortensen, Lars Landberg, Jùrgen Hùjstrup and Helmut P. Frank, Department of Wind Energy and Atmospheric Physics, Risù National Laboratory, Frederiks- borgvej 399, DK-4000 Roskilde, Denmark Key words: Wind power meteorology has evolved as an applied science ®rmly founded on boundary wind atlas; layer meteorology but with strong links to climatology and geography. It concerns itself resource with three main areas: siting of wind turbines, regional wind resource assessment and assessment; siting; short-term prediction of the wind resource. The history, status and perspectives of wind wind climatology; power meteorology are presented, with emphasis on physical considerations and on its wind power practical application. Following a global view of the wind resource, the elements of meterology; boundary layer meteorology which are most important for wind energy are reviewed: wind pro®les; wind pro®les and shear, turbulence and gust, and extreme winds. *c 1998 John Wiley & turbulence; extreme winds; Sons, Ltd. rotor wakes Preface The kind invitation by John Wiley & Sons to write an overview article on wind power meteorology prompted us to lay down the fundamental principles as well as attempting to reveal the state of the artÐ and also to disclose what we think are the most important issues to stake future research eorts on. Unfortunately, such an eort calls for a lengthy historical, philosophical, physical, mathematical and statistical elucidation, resulting in an exorbitant requirement for writing space. By kind permission of the publisher we are able to present our eort in full, but in two partsÐPart I: Climate and Turbulence and Part II: Siting and Models. -
Transition to Turbulence in Non-Newtonian Fluids: an In-Vitro Study Using Pulsed Doppler Ultrasound for Biological Flows
TRANSITION TO TURBULENCE IN NON-NEWTONIAN FLUIDS: AN IN-VITRO STUDY USING PULSED DOPPLER ULTRASOUND FOR BIOLOGICAL FLOWS Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Dipankar Biswas December, 2014 TRANSITION TO TURBULENCE IN NON-NEWTONIAN FLUIDS: AN IN-VITRO STUDY USING PULSED DOPPLER ULTRASOUND FOR BIOLOGICAL FLOWS Dipankar Biswas Dissertation Approved: Accepted: __________________________ __________________________ Advisor Department Chair Dr. Francis Loth Dr. Sergio D. Felicelli __________________________ __________________________ Committee Member Dean of the College Dr. Yang H. Yun Dr. George K. Haritos __________________________ __________________________ Committee Member Vice Provost Dr. Abhilash Chandy Dr. Rex D. Ramsier __________________________ __________________________ Committee Member Date: Dr. Alex Povitsky __________________________ Committee Member Dr. Peter H. Niewiarowski ii ABSTRACT Blood is a complex fluid and has been established to behave as a shear thinning non-Newtonian fluid when exposed to low shear rates (<200s-1). Many hemodynamic investigations use a Newtonian fluid to represent blood when the flow field of study has relatively high shear rates. Shear thinning fluids have been shown to exhibit differences in transition to turbulence compared to that of Newtonian fluids. Incorrect assumption of the transition point in a simulation could result in erroneous prediction of hemodynamic forces. The goal of the present study was to compare velocity profiles near transition to turbulence of whole blood and standard blood analogs in a straight rigid pipe and an S-shaped pipe under a range of steady flow conditions. Reynolds number for blood was defined based on the viscosity at a shear rate of 400s-1. -
Aircraft Wake Turbulence
AERONAUTICAL AUSTRALIA INFORMATION AERONAUTICAL INFORMATION SERVICE CIRCULAR (AIC) AIRSERVICES AUSTRALIA GPO BOX 367, CANBERRA ACT 2601 Phone: 02 6268 4874 Email: [email protected] H30/17 Effective: 201710200300 UTC AIRCRAFT WAKE TURBULENCE 1. INTRODUCTION 1.1 This AIC provides basic information on wake vortex behaviour, alerts pilots to the hazards of aircraft wake turbulence, and recommends operational procedures to avoid or deal with wake turbulence encounters. 2. WHAT IS WAKE TURBULENCE? 2.1 All aircraft generate wake vortices, also known as wake turbulence. When an aircraft is flying, there is an increase in pressure below the wing and a decrease in pressure on the top of the aerofoil. Therefore, at the tip of the wing, there is a differential pressure that concentrates the roll up of the airflow aft of the wing tip. Limited smaller vortex swirls exist also for the same reason at the tips of the flaps. Behind the aircraft all these small vortices mix together and roll up into two main vortices turning in opposite directions, clockwise behind the left wing (seen from behind) and anti-clockwise behind the right one wing (see Figure 1). 3. CHARACTERISTICS OF WAKE VORTICES 3.1 Wake vortex generation begins when the nose wheel lifts off the runway on take-off and continues until the nose wheel touches down on landing. 3.2 Size: The active part of a vortex has a very small radius, not more than a few metres. However, there is a lot of energy due to the high rotation speed of the air. (AIC H30/17) Page 2 of 20 3.3 Intensity: The characteristics of the wake vortices generated by an aircraft in flight are determined initially by the aircraft’s gross weight, wingspan, aircraft configuration and attitude. -
The Method of Fundamental Solutions for the Oseen Steady‐State Viscous
This is a repository copy of The method of fundamental solutions for the Oseen steady‐ state viscous flow past obstacles of known or unknown shapes. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/146897/ Version: Accepted Version Article: Karageorghis, A and Lesnic, D orcid.org/0000-0003-3025-2770 (2019) The method of fundamental solutions for the Oseen steady‐ state viscous flow past obstacles of known or unknown shapes. Numerical Methods for Partial Differential Equations, 35 (6). pp. 2103-2119. ISSN 0749-159X https://doi.org/10.1002/num.22404 © 2019 Wiley Periodicals, Inc. This is the peer reviewed version of the following article: Karageorghis, A and Lesnic, D (2019) The method of fundamental solutions for the Oseen steady‐ state viscous flow past obstacles of known or unknown shapes. Numerical Methods for Partial Differential Equations, 35 (6). pp. 2103-2119. ISSN 0749-159X, which has been published in final form at https://doi.org/10.1002/num.22404. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.