Java Platform, Standard Edition Tools Reference
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SJC – Small Java Compiler
SJC – Small Java Compiler User Manual Stefan Frenz Translation: Jonathan Brase original version: 2011/06/08 latest document update: 2011/08/24 Compiler Version: 182 Java is a registered trademark of Oracle/Sun Table of Contents 1 Quick introduction.............................................................................................................................4 1.1 Windows...........................................................................................................................................4 1.2 Linux.................................................................................................................................................5 1.3 JVM Environment.............................................................................................................................5 1.4 QEmu................................................................................................................................................5 2 Hello World.......................................................................................................................................6 2.1 Source Code......................................................................................................................................6 2.2 Compilation and Emulation...............................................................................................................8 2.3 Details...............................................................................................................................................9 -
Introduction to Java
Introduction to Java James Brucker What is Java? Java is a language for writing computer programs. it runs on almost any "computer". desktop mobile phones game box web server & web apps smart devices What Uses Java? OpenOffice & LibreOffice (like Microsoft Office) Firefox Google App Engine Android MindCraft & Greenfoot IDE: Eclipse, IntelliJ, NetBeans How Java Works: Compiling 1. You (programmer) write source code in Java. 2. A compiler (javac) checks the code and translates it into "byte code" for a "virtual machine". Java Java source Hello.java javac Hello.class byte code code compiler public class Hello { public Hello(); aload_0 public static void main( String [ ] args ) { invokespecial #1; //Method java/ System.out.println( "I LOVE programming" ); lang/Object."<init>":()V return } main(java.lang.String[]); } getstatic #2; //Field ... How Java Works: Run the Bytecode 3. Run the byte code in a Java Virtual Machine (JVM). 4. The JVM (java command) interprets the byte code and loads other code from libraries as needed. Java I LOVE programming byte Hello.class java code java virtual public Hello(); aload_0 machine invokespecial #1; //Method java/lang/Object."<init>":()V return main(java.lang.String[]); Other java classes, getstatic #2; //Field ... saved in libraries. Summary: How Java Works 1. You (programmer) write program source code in Java. 2. Java compiler checks the code and translates it into "byte code". 3. A Java virtual machine (JVM) runs the byte code. Libraries Hello, javac Hello.class java Hello.java World! Java compiler byte code JVM: Program source - load byte code execution program - verify the code - runs byte code - enforce security model How to Write Source Code? You can use any editor to write the Java source code. -
Java Programming Standards & Reference Guide
Java Programming Standards & Reference Guide Version 3.2 Office of Information & Technology Department of Veterans Affairs Java Programming Standards & Reference Guide, Version 3.2 REVISION HISTORY DATE VER. DESCRIPTION AUTHOR CONTRIBUTORS 10-26-15 3.2 Added Logging Sid Everhart JSC Standards , updated Vic Pezzolla checkstyle installation instructions and package name rules. 11-14-14 3.1 Added ground rules for Vic Pezzolla JSC enforcement 9-26-14 3.0 Document is continually Raymond JSC and several being edited for Steele OI&T noteworthy technical accuracy and / PD Subject Matter compliance to JSC Experts (SMEs) standards. 12-1-09 2.0 Document Updated Michael Huneycutt Sr 4-7-05 1.2 Document Updated Sachin Mai L Vo Sharma Lyn D Teague Rajesh Somannair Katherine Stark Niharika Goyal Ron Ruzbacki 3-4-05 1.0 Document Created Sachin Sharma i Java Programming Standards & Reference Guide, Version 3.2 ABSTRACT The VA Java Development Community has been establishing standards, capturing industry best practices, and applying the insight of experienced (and seasoned) VA developers to develop this “Java Programming Standards & Reference Guide”. The Java Standards Committee (JSC) team is encouraging the use of CheckStyle (in the Eclipse IDE environment) to quickly scan Java code, to locate Java programming standard errors, find inconsistencies, and generally help build program conformance. The benefits of writing quality Java code infused with consistent coding and documentation standards is critical to the efforts of the Department of Veterans Affairs (VA). This document stands for the quality, readability, consistency and maintainability of code development and it applies to all VA Java programmers (including contractors). -
Java (Programming Langua a (Programming Language)
Java (programming language) From Wikipedia, the free encyclopedialopedia "Java language" redirects here. For the natural language from the Indonesian island of Java, see Javanese language. Not to be confused with JavaScript. Java multi-paradigm: object-oriented, structured, imperative, Paradigm(s) functional, generic, reflective, concurrent James Gosling and Designed by Sun Microsystems Developer Oracle Corporation Appeared in 1995[1] Java Standard Edition 8 Update Stable release 5 (1.8.0_5) / April 15, 2014; 2 months ago Static, strong, safe, nominative, Typing discipline manifest Major OpenJDK, many others implementations Dialects Generic Java, Pizza Ada 83, C++, C#,[2] Eiffel,[3] Generic Java, Mesa,[4] Modula- Influenced by 3,[5] Oberon,[6] Objective-C,[7] UCSD Pascal,[8][9] Smalltalk Ada 2005, BeanShell, C#, Clojure, D, ECMAScript, Influenced Groovy, J#, JavaScript, Kotlin, PHP, Python, Scala, Seed7, Vala Implementation C and C++ language OS Cross-platform (multi-platform) GNU General Public License, License Java CommuniCommunity Process Filename .java , .class, .jar extension(s) Website For Java Developers Java Programming at Wikibooks Java is a computer programming language that is concurrent, class-based, object-oriented, and specifically designed to have as few impimplementation dependencies as possible.ble. It is intended to let application developers "write once, run ananywhere" (WORA), meaning that code that runs on one platform does not need to be recompiled to rurun on another. Java applications ns are typically compiled to bytecode (class file) that can run on anany Java virtual machine (JVM)) regardless of computer architecture. Java is, as of 2014, one of tthe most popular programming ng languages in use, particularly for client-server web applications, witwith a reported 9 million developers.[10][11] Java was originallyy developed by James Gosling at Sun Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core component of Sun Microsystems'Micros Java platform. -
Exceptions and Libraries
9/7/2016 Exceptions and Libraries RS 9.3, 6.4 Some slides created by Marty Stepp http://www.cs.washington.edu/143/ Edited by Sarah Heckman CSC216: Programming Concepts –Java © NC State CSC216 Faculty 1 Exceptions • exception: An object representing an error or unusual condition. – unchecked exceptions: One that does not have to be handled for the program to compile – checked exception: One that must be handled for the program to compile. • What are some unchecked and checked exceptions? • What may cause unchecked or checked exceptions? • For any checked exception, you must either: –also throw that exception yourself – catch (handle) the exception CSC216: Programming Concepts –Java © NC State CSC216 Faculty 2 1 9/7/2016 Throwing an exception public type name(params) throws type { • throws clause: Keywords on a method's header that states that the method may generate an exception. – You only need to list the checked exceptions for compilation – Good form to list all exceptions (including unchecked exceptions) –Example: public class ReadFile { public static void main(String[] args) throws FileNotFoundException { } "I hereby announce that this method might throw an exception, and the caller must accept the consequences if it happens." CSC216: Programming Concepts –Java © NC State CSC216 Faculty 3 Catching an exception try { statement(s); } catch (ExceptionType name) { code to handle the exception } – The try code executes – at least one statement should potentially cause an exception • A method call that throws an exception – If the exception -
Configuring & Using Apache Tomcat 4 a Tutorial on Installing and Using
Configuring & Using Apache Tomcat 4 A Tutorial on Installing and Using Tomcat for Servlet and JSP Development Taken from Using-Tomcat-4 found on http://courses.coreservlets.com Following is a summary of installing and configuring Apache Tomcat 4 for use as a standalone Web server that supports servlets 2.3 and JSP 1.2. Integrating Tomcat as a plugin within the regular Apache server or a commercial Web server is more complicated (for details, see http://jakarta.apache.org/tomcat/tomcat-4.0-doc/). Integrating Tomcat with a regular Web server is valuable for a deployment scenario, but my goal here is to show how to use Tomcat as a development server on your desktop. Regardless of what deployment server you use, you'll want a standalone server on your desktop to use for development. (Note: Tomcat is sometimes referred to as Jakarta Tomcat since the Apache Java effort is known as "The Jakarta Project"). The examples here assume you are using Windows, but they can be easily adapted for Solaris, Linux, and other versions of Unix. I've gotten reports of successful use on MacOS X, but don't know the setup details. Except when I refer to specific Windows paths (e.g., C:\blah\blah), I use URL-style forward slashes for path separators (e.g., install_dir/webapps/ROOT). Adapt as necessary. The information here is adapted from More Servlets and JavaServer Pages from Sun Microsystems Press. For the book table of contents, index, source code, etc., please see http://www.moreservlets.com/. For information on servlet and JSP training courses (either at public venues or on-site at your company), please see http://courses.coreservlets.com. -
The Java® Language Specification Java SE 8 Edition
The Java® Language Specification Java SE 8 Edition James Gosling Bill Joy Guy Steele Gilad Bracha Alex Buckley 2015-02-13 Specification: JSR-337 Java® SE 8 Release Contents ("Specification") Version: 8 Status: Maintenance Release Release: March 2015 Copyright © 1997, 2015, Oracle America, Inc. and/or its affiliates. 500 Oracle Parkway, Redwood City, California 94065, U.S.A. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. The Specification provided herein is provided to you only under the Limited License Grant included herein as Appendix A. Please see Appendix A, Limited License Grant. To Maurizio, with deepest thanks. Table of Contents Preface to the Java SE 8 Edition xix 1 Introduction 1 1.1 Organization of the Specification 2 1.2 Example Programs 6 1.3 Notation 6 1.4 Relationship to Predefined Classes and Interfaces 7 1.5 Feedback 7 1.6 References 7 2 Grammars 9 2.1 Context-Free Grammars 9 2.2 The Lexical Grammar 9 2.3 The Syntactic Grammar 10 2.4 Grammar Notation 10 3 Lexical Structure 15 3.1 Unicode 15 3.2 Lexical Translations 16 3.3 Unicode Escapes 17 3.4 Line Terminators 19 3.5 Input Elements and Tokens 19 3.6 White Space 20 3.7 Comments 21 3.8 Identifiers 22 3.9 Keywords 24 3.10 Literals 24 3.10.1 Integer Literals 25 3.10.2 Floating-Point Literals 31 3.10.3 Boolean Literals 34 3.10.4 Character Literals 34 3.10.5 String Literals 35 3.10.6 Escape Sequences for Character and String Literals 37 3.10.7 The Null Literal 38 3.11 Separators -
Solutions to Exercises
533 Appendix Solutions to Exercises Chapters 1 through 10 close with an “Exercises” section that tests your understanding of the chapter’s material through various exercises. Solutions to these exercises are presented in this appendix. Chapter 1: Getting Started with Java 1. Java is a language and a platform. The language is partly patterned after the C and C++ languages to shorten the learning curve for C/C++ developers. The platform consists of a virtual machine and associated execution environment. 2. A virtual machine is a software-based processor that presents its own instruction set. 3. The purpose of the Java compiler is to translate source code into instructions (and associated data) that are executed by the virtual machine. 4. The answer is true: a classfile’s instructions are commonly referred to as bytecode. 5. When the virtual machine’s interpreter learns that a sequence of bytecode instructions is being executed repeatedly, it informs the virtual machine’s Just In Time (JIT) compiler to compile these instructions into native code. 6. The Java platform promotes portability by providing an abstraction over the underlying platform. As a result, the same bytecode runs unchanged on Windows-based, Linux-based, Mac OS X–based, and other platforms. 7. The Java platform promotes security by providing a secure environment in which code executes. It accomplishes this task in part by using a bytecode verifier to make sure that the classfile’s bytecode is valid. 8. The answer is false: Java SE is the platform for developing applications and applets. 533 534 APPENDIX: Solutions to Exercises 9. -
Perspectives on Free and Open Source Software.Pdf
Perspectives on Free and Open Source Software Perspectives on Free and Open Source Software edited by Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani The MIT Press Cambridge, Massachusetts London, England © 2005 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please e-mail [email protected] or write to Special Sales Department, The MIT Press, 5 Cambridge Center, Cambridge, MA 02142. This book was set in Stone sans and Stone serif by SNP Best-set Typesetter Ltd., Hong Kong. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Perspectives on free and open source software / edited by Joseph Feller . [et al.]. p. cm. Includes bibliographical references and index. ISBN 0-262-06246-1 (alk. paper) 1. Shareware (Computer software) 2. Open source software. 3. Computer software—Development. I. Feller, Joseph, 1972– QA76.76.S46P47 2005 005.36—dc22 2004064954 10987654321 My love, thanks and humble apologies go to my very patient and supportive family: Carol, Caelen, Damien, and Dylan. JF Arís as Gaeilge: Buíochas mór le mo chlann, Máire, Pól agus Eimear. Is mór agam an iarracht a rinne sibh ar mo shon. BF With heartfelt warmth, I dedicate this book to my wife, Jacqueline, and my two sons, Derek and Zachery, who bring meaning to everything I do. -
Building Useful Program Analysis Tools Using an Extensible Java Compiler
Building Useful Program Analysis Tools Using an Extensible Java Compiler Edward Aftandilian, Raluca Sauciuc Siddharth Priya, Sundaresan Krishnan Google, Inc. Google, Inc. Mountain View, CA, USA Hyderabad, India feaftan, [email protected] fsiddharth, [email protected] Abstract—Large software companies need customized tools a specific task, but they fail for several reasons. First, ad- to manage their source code. These tools are often built in hoc program analysis tools are often brittle and break on an ad-hoc fashion, using brittle technologies such as regular uncommon-but-valid code patterns. Second, simple ad-hoc expressions and home-grown parsers. Changes in the language cause the tools to break. More importantly, these ad-hoc tools tools don’t provide sufficient information to perform many often do not support uncommon-but-valid code code patterns. non-trivial analyses, including refactorings. Type and symbol We report our experiences building source-code analysis information is especially useful, but amounts to writing a tools at Google on top of a third-party, open-source, extensible type-checker. Finally, more sophisticated program analysis compiler. We describe three tools in use on our Java codebase. tools are expensive to create and maintain, especially as the The first, Strict Java Dependencies, enforces our dependency target language evolves. policy in order to reduce JAR file sizes and testing load. The second, error-prone, adds new error checks to the compilation In this paper, we present our experience building special- process and automates repair of those errors at a whole- purpose tools on top of the the piece of software in our codebase scale. -
Apache Harmony Project Tim Ellison Geir Magnusson Jr
The Apache Harmony Project Tim Ellison Geir Magnusson Jr. Apache Harmony Project http://harmony.apache.org TS-7820 2007 JavaOneSM Conference | Session TS-7820 | Goal of This Talk In the next 45 minutes you will... Learn about the motivations, current status, and future plans of the Apache Harmony project 2007 JavaOneSM Conference | Session TS-7820 | 2 Agenda Project History Development Model Modularity VM Interface How Are We Doing? Relevance in the Age of OpenJDK Summary 2007 JavaOneSM Conference | Session TS-7820 | 3 Agenda Project History Development Model Modularity VM Interface How Are We Doing? Relevance in the Age of OpenJDK Summary 2007 JavaOneSM Conference | Session TS-7820 | 4 Apache Harmony In the Beginning May 2005—founded in the Apache Incubator Primary Goals 1. Compatible, independent implementation of Java™ Platform, Standard Edition (Java SE platform) under the Apache License 2. Community-developed, modular architecture allowing sharing and independent innovation 3. Protect IP rights of ecosystem 2007 JavaOneSM Conference | Session TS-7820 | 5 Apache Harmony Early history: 2005 Broad community discussion • Technical issues • Legal and IP issues • Project governance issues Goal: Consolidation and Consensus 2007 JavaOneSM Conference | Session TS-7820 | 6 Early History Early history: 2005/2006 Initial Code Contributions • Three Virtual machines ● JCHEVM, BootVM, DRLVM • Class Libraries ● Core classes, VM interface, test cases ● Security, beans, regex, Swing, AWT ● RMI and math 2007 JavaOneSM Conference | Session TS-7820 | -
SUBJECT-COMPUTER CLASS-12 CHAPTER 9 – Compiling and Running Java Programs
SUBJECT-COMPUTER CLASS-12 CHAPTER 9 – Compiling and Running Java Programs Introduction to Java programming JAVA was developed by Sun Microsystems Inc in 1991, later acquired by Oracle Corporation. It was developed by James Gosling and Patrick Naughton. It is a simple programming language. Writing, compiling and debugging a program is easy in java. It helps to create modular programs and reusable code. Bytecode javac compiler of JDK compiles the java source code into bytecode so that it can be executed by JVM. The bytecode is saved in a .class file by compiler. Java Virtual Machine (JVM) This is generally referred as JVM. Before, we discuss about JVM lets see the phases of program execution. Phases are as follows: we write the program, then we compile the program and at last we run the program. 1) Writing of the program is of course done by java programmer. 2) Compilation of program is done by javac compiler, javac is the primary java compiler included in java development kit (JDK). It takes java program as input and generates java bytecode as output. 3) In third phase, JVM executes the bytecode generated by compiler. This is called program run phase. So, now that we understood that the primary function of JVM is to execute the bytecode produced by compiler. Characteristics of Java Simple Java is very easy to learn, and its syntax is simple, clean and easy to understand. Multi-threaded Multithreading capabilities come built right into the Java language. This means it is possible to build highly interactive and responsive apps with a number of concurrent threads of activity.