Identity-By-Descent Estimation with Population- and Pedigree-Based Imputation in Admixed Family Data Mohamad Saad

Total Page:16

File Type:pdf, Size:1020Kb

Identity-By-Descent Estimation with Population- and Pedigree-Based Imputation in Admixed Family Data Mohamad Saad Marshall University Marshall Digital Scholar Biochemistry and Microbiology Faculty Research 2016 Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data Mohamad Saad Alejandro Q. Nato Jr. Marshall University, [email protected] Fiona L. Grimson Steven M. Lewis Lisa A. Brown See next page for additional authors Follow this and additional works at: https://mds.marshall.edu/sm_bm Part of the Genetic Phenomena Commons, Genetic Processes Commons, and the Genetic Structures Commons Recommended Citation Saad M, Nato AQ, Grimson FL, et al. Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data. BMC Proceedings. 2016;10(Suppl 7):295-301. doi:10.1186/s12919-016-0046-5. This Conference Proceeding is brought to you for free and open access by the Faculty Research at Marshall Digital Scholar. It has been accepted for inclusion in Biochemistry and Microbiology by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Authors Mohamad Saad, Alejandro Q. Nato Jr., Fiona L. Grimson, Steven M. Lewis, Lisa A. Brown, Elizabeth M. Blue, Timothy A. Thornton, Elizabeth A. Thompson, and Ellen M. Wijsman This conference proceeding is available at Marshall Digital Scholar: https://mds.marshall.edu/sm_bm/238 The Author(s) BMC Proceedings 2016, 10(Suppl 7):7 DOI 10.1186/s12919-016-0046-5 BMC Proceedings PROCEEDINGS Open Access Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data Mohamad Saad1,2, Alejandro Q. Nato Jr2, Fiona L. Grimson3, Steven M. Lewis3, Lisa A. Brown1, Elizabeth M. Blue2, Timothy A. Thornton1, Elizabeth A. Thompson3 and Ellen M. Wijsman1,2,4* From Genetic Analysis Workshop 19 Vienna, Austria. 24-26 August 2014 Abstract Background: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis. Methods: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals. Results: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only. Conclusions: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis. Background on a dense single nucleotide polymorphism (SNP) In the last few years, imputation approaches have been panel, (b) genotype remaining individuals on a sparse widely used in genetic studies, especially in the context SNP panel, and (c) use statistical methods for imput- of genome-wide association studies and population- ation, generally based on hidden Markov models, to based designs. This is a result of an attractive feature of impute untyped SNPs from the dense panel into these imputation: it increases genetic information at low-cost. individuals with only sparse (or no) genotyped SNPs. Moreover, imputation allows meta-analysis between dif- Imputation approaches have been proposed for both ferent studies, especially when different genotyping family- and population-based designs. However, the platforms are used. The main idea of imputation is to: performance of these approaches has not yet been thor- (a) genotype or sequence a small subset of individuals oughly evaluated and compared in pedigree data. The availability of the International Haplotype Map Project * Correspondence: [email protected] (HapMap) [1] and the 1000 Genomes Project [2] have 1 Department of Biostatistics, University of Washington, Seattle, WA, USA allowed population-based imputation to become wide- 2Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA spread. However, these databases are not ideal for Full list of author information is available at the end of the article © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The Author(s) BMC Proceedings 2016, 10(Suppl 7):7 Page 296 of 415 family-based imputation methods, which require that estimation within pedigrees, required for pedigree- the dense SNP panel individuals be selected from pedi- based imputation, we used a set of 351 well-spaced grees. In addition, imputation approaches for large ped- SNPs (Marker Set 2 [MS-2]; Table 1) extracted from igrees are more challenging, and only quite recently has the SNP data of all genotyped individuals in these 16 an approach been proposed and implemented in the pedigrees. Physical positions were converted to meiotic program called Genotype Imputation Given Inheritance map positions (cM) by reference to the Rutgers map (GIGI) [3] that is able to efficiently handle large pedi- [6], and converted to positions based on the Haldane grees and accurately impute rare variants. The search map function. For IBD mapping analysis based on a for rare risk variants has made imputation in family- meiotic map, with the knowledge of the trait simula- based designs more important, because of enrichment tion model provided in the “Answers” file obtained of such variants in relatively large pedigrees [4] since with the data, MS-2 was used to compute IBD within linkage analysis may be powerful for initiating rare vari- pedigrees. We focused the IBD mapping analysis on 7 ant identification. An attractive study design is to (a) pedigrees (Pedigrees 05, 06, 07, 08, 10, 21, 25; total perform linkage analysis, (b) perform imputation in the number of 529 individuals) that showed high levels of region(s) with linkage signals, and (c) perform associ- relatedness on the basis of Genetic Analysis Workshop ation analysis on the imputation data in these regions. 18 analysis [7]. We selected 17 pairs of individuals (21 It is well-established that larger pedigrees are advanta- distinct individuals) who had shown high levels of pair- geous for this linkage analysis component. wise kinship and were not related by the pedigree infor- Identity-by-descent (IBD) underpins both linkage ana- mation. For these 21 cryptically related individuals, we lysis and imputation. For linkage analysis, once IBD has used Marker Set 3 (MS-3) (Table 1) to infer IBD among been determined, the pedigree structure is no longer “unrelated” individuals. needed for subsequent computations. For imputation, IBD within pedigrees or (ancestrally) across individuals Selection of dense SNP panel individuals for imputation is used as a source of correlation between individuals for Among the 464 sequenced individuals, we chose to family- and population-based imputation. include 100 or 200 of them as if genotyped on the In this study, we evaluated and compared the perform- dense SNP panel. In proportion to the number of ance of several family- and population-based imputation sequenced individuals in each pedigree, we selected approaches in the Mexican American pedigree data pro- individuals following 2 strategies: (a) random selec- vided by Genetic Analysis Workshop 19 (GAW19). We tion or (b) via GIGI-Pick (a method to help with in- also evaluated the effect on imputation accuracy of the formative choices) [5]. For GIGI-Pick, we used the number of selected individuals for sequencing and the genome-wide coverage option, which selects subjects way they were selected, randomly or by tailored selection based on the pedigree structure. In the group of the with GIGI-Pick [5]. In addition, we evaluated the per- remaining 264 or 364 individuals, we extracted geno- formance of a new IBD mapping approach that we types of SNPs present in the SNP chip of our region propose, which combines IBD information inferred (a) of interest (~700 SNPs), to form the set of sparse using a sparse SNP panel from known pedigrees, and (b) SNP panel individual data set. using a dense SNP panel from unrelated individuals across pedigrees. Population-based imputation Weperformed2-stepimputation,withpre-phasingof Methods markers in the first step, and imputation in the second Data step. The pre-phasing algorithms/programs we used All our analyses used chromosome 3. For population- were: BEAGLE [8], IMPUTE2 [9], MaCH [10], and
Recommended publications
  • Impact of Imputation Methods on the Amount of Genetic Variation Captured by a Single-Nucleotide Polymorphism Panel in Soybeans A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Purdue E-Pubs Purdue University Purdue e-Pubs Department of Agronomy Faculty Publications Department of Agronomy 2-2-2016 Impact of imputation methods on the amount of genetic variation captured by a single-nucleotide polymorphism panel in soybeans A. Xavier Purdue University William M. Muir Purdue University Katy M. Rainey Purdue Univeristy, [email protected] Follow this and additional works at: https://docs.lib.purdue.edu/agrypubs Recommended Citation Xavier, A.; Muir, William M.; and Rainey, Katy M., "Impact of imputation methods on the amount of genetic variation captured by a single-nucleotide polymorphism panel in soybeans" (2016). Department of Agronomy Faculty Publications. Paper 13. http://dx.doi.org/10.1186/s12859-016-0899-7 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Xavier et al. BMC Bioinformatics (2016) 17:55 DOI 10.1186/s12859-016-0899-7 METHODOLOGY ARTICLE Open Access Impact of imputation methods on the amount of genetic variation captured by a single-nucleotide polymorphism panel in soybeans A. Xavier1, William M. Muir2 and Katy M. Rainey1* Abstract Background: Success in genome-wide association studies and marker-assisted selection depends on good phenotypic and genotypic data. The more complete this data is, the more powerful will be the results of analysis. Nevertheless, there are next-generation technologies that seek to provide genotypic information in spite of great proportions of missing data. The procedures these technologies use to impute genetic data, therefore, greatly affect downstream analyses.
    [Show full text]
  • Imputation-Based Assessment of Next Generation Rare Exome Variant Arrays
    IMPUTATION-BASED ASSESSMENT OF NEXT GENERATION RARE EXOME VARIANT ARRAYS ALICIA R. MARTIN* Department of Genetics & Biomedical Informatics Training Program, Stanford University Stanford, CA, 94305 Email: [email protected] GERARD TSE Department of Computer Science, Stanford University Stanford, CA, 94305 Email: [email protected] CARLOS D. BUSTAMANTE Department of Genetics, Stanford University Stanford, CA, 94305 Email: [email protected] EIMEAR E. KENNY* Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai New York, NY 10029 Email: [email protected] A striking finding from recent large-scale sequencing efforts is that the vast majority of variants in the human genome are rare and found within single populations or lineages. These observations hold important implications for the design of the next round of disease variant discovery efforts—if genetic variants that influence disease risk follow the same trend, then we expect to see population-specific disease associations that require large samples sizes for detection. To address this challenge, and due to the still prohibitive cost of sequencing large cohorts, researchers have developed a new generation of low-cost genotyping arrays that assay rare variation previously identified from large exome sequencing studies. Genotyping approaches rely not only on directly observing variants, but also on phasing and imputation methods that use publicly available reference panels to infer unobserved variants in a study cohort. Rare variant exome arrays are intentionally enriched for variants likely to be disease causing, and here we assay the ability of the first commercially available rare exome variant array (the Illumina Infinium HumanExome BeadChip) to also tag other potentially damaging variants not molecularly assayed.
    [Show full text]
  • Allele Imputation and Haplotype Determination from Databases Composed of Nuclear Families by Nathan Medina-Rodríguez and Ángelo Santana
    CONTRIBUTED RESEARCH ARTICLE 35 Allele Imputation and Haplotype Determination from Databases Composed of Nuclear Families by Nathan Medina-Rodríguez and Ángelo Santana Abstract The alleHap package is designed for imputing genetic missing data and reconstruct non- recombinant haplotypes from pedigree databases in a deterministic way. When genotypes of related individuals are available in a number of linked genetic markers, the program starts by identifying haplotypes compatible with the observed genotypes in those markers without missing values. If haplotypes are identified in parents or offspring, missing alleles can be imputed in subjects containing missing values. Several scenarios are analyzed: family completely genotyped, children partially genotyped and parents completely genotyped, children fully genotyped and parents containing entirely or partially missing genotypes, and founders and their offspring both only partially genotyped. The alleHap package also has a function to simulate pedigrees including all these scenarios. This article describes in detail how our package works for the desired applications, including illustrated explanations and easily reproducible examples. Introduction The knowledge about human genetic variation has been growing exponentially over the last decade. Collaborative efforts of international projects such as HapMap (Consortium and others, 2005) and 1000 Genomes (Consortium and others, 2012) have contributed to improving the discovery about human genetic diversity. Genotype imputation and haplotype reconstruction have achieved an important role in Genome- Wide Association Studies (GWAS) during recent years. Estimation methods are frequently used to infer missing genotypes as well as haplotypes from databases containing related and/or unrelated subjects. The majority of these analyses have been developed using several statistical methods (Browning and Browning, 2011a) which are able to impute genotypes as well as perform haplotype phasing (also known as haplotype estimation) of the corresponding genomic regions.
    [Show full text]
  • Genotype Imputation Via Matrix Completion
    Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Method Genotype imputation via matrix completion Eric C. Chi,1,6 Hua Zhou,2 Gary K. Chen,3 Diego Ortega Del Vecchyo,4 and Kenneth Lange5 1Department of Human Genetics, University of California, Los Angeles, California 90095, USA; 2Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695-8203, USA; 3Department of Preventive Medicine, University of Southern California, Los Angeles, California 90089, USA; 4Interdepartmental Program in Bioinformatics, University of California, Los Angeles, California 90095, USA; 5Department of Biomathematics, Department of Human Genetics, and Department of Statistics, University of California, Los Angeles, California 90095, USA Most current genotype imputation methods are model-based and computationally intensive, taking days to impute one chromosome pair on 1000 people. We describe an efficient genotype imputation method based on matrix completion. Our matrix completion method is implemented in MATLAB and tested on real data from HapMap 3, simulated pedigree data, and simulated low-coverage sequencing data derived from the 1000 Genomes Project. Compared with leading im- putation programs, the matrix completion algorithm embodied in our program MENDEL-IMPUTE achieves comparable imputation accuracy while reducing run times significantly. Implementation in a lower-level language such as Fortran or C is apt to further improve computational efficiency. [Supplemental material is available for this article.] Modern genomics studies almost invariably deal with massive the spirit of Occam’s razor, it seeks the simplest matrix consistent amounts of data. Data sets collected on single nucleotide poly- with the observed entries. This criterion conveniently translates morphisms (SNPs), next-generation sequencing (NGS), copy num- into searching for a low rank matrix with a small squared error ber variations (CNV), and RNA-seq all fall into this category.
    [Show full text]
  • Impact of Imputation Methods on the Amount of Genetic Variation Captured by a Single-Nucleotide Polymorphism Panel in Soybeans A
    Xavier et al. BMC Bioinformatics (2016) 17:55 DOI 10.1186/s12859-016-0899-7 METHODOLOGY ARTICLE Open Access Impact of imputation methods on the amount of genetic variation captured by a single-nucleotide polymorphism panel in soybeans A. Xavier1, William M. Muir2 and Katy M. Rainey1* Abstract Background: Success in genome-wide association studies and marker-assisted selection depends on good phenotypic and genotypic data. The more complete this data is, the more powerful will be the results of analysis. Nevertheless, there are next-generation technologies that seek to provide genotypic information in spite of great proportions of missing data. The procedures these technologies use to impute genetic data, therefore, greatly affect downstream analyses. This study aims to (1) compare the genetic variance in a single-nucleotide polymorphism panel of soybean with missing data imputed using various methods, (2) evaluate the imputation accuracy and post-imputation quality associated with these methods, and (3) evaluate the impact of imputation method on heritability and the accuracy of genome-wide prediction of soybean traits. The imputation methods we evaluated were as follows: multivariate mixed model, hidden Markov model, logical algorithm, k-nearest neighbor, single value decomposition, and random forest. We used raw genotypes from the SoyNAM project and the following phenotypes: plant height, days to maturity, grain yield, and seed protein composition. Results: We propose an imputation method based on multivariate mixed models using pedigree information. Our methods comparison indicate that heritability of traits can be affected by the imputation method. Genotypes with missing values imputed with methods that make use of genealogic information can favor genetic analysis of highly polygenic traits, but not genome-wide prediction accuracy.
    [Show full text]
  • References for Haplotype Imputation in the Big Data
    ogy iol : Op r B e a n l A u c c c e l e s Li et al., Mol Biol 2015, 4:4 o s M Molecular Biology: Open Access DOI: 10.4172/2168-9547.1000143 ISSN: 2168-9547 Review Article Open Access References for Haplotype Imputation in the Big Data Era Wenzhi Li1,2#, Wei Xu1,2#, Qiling Li1, Li Ma2,3* and Qing Song1,2,3* 1Center of Big Data and Bioinformatics, First Affiliated Hospital of Medicine School, Xi’an Jiaotong University, Xi’an, Shaanxi, China 2Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA 34DGenome Inc, Atlanta, Georgia, USA #Equal contribution Abstract Imputation is a powerful in silico approach to fill in those missing values in the big datasets. This process requires a reference panel, which is a collection of big data from which the missing information can be extracted and imputed. Haplotype imputation requires ethnicity-matched references; a mismatched reference panel will significantly reduce the quality of imputation. However, currently existing big datasets cover only a small number of ethnicities, there is a lack of ethnicity-matched references for many ethnic populations in the world, which has hampered the data imputation of haplotypes and its downstream applications. To solve this issue, several approaches have been proposed and explored, including the mixed reference panel, the internal reference panel and genotype-converted reference panel. This review article provides the information and comparison between these approaches. Increasing evidence showed that not just one or two genetic elements dictate the gene activity and functions; instead, cis- interactions of multiple elements dictate gene activity.
    [Show full text]
  • Accurate Genotype Imputation in Multiparental Populations
    Genetics: Early Online, published on July 25, 2018 as 10.1534/genetics.118.300885 1 Accurate genotype imputation in multiparental populations 2 from low-coverage sequence ∗ 3 Chaozhi Zheng , Martin P. Boer, and Fred A. van Eeuwijk 4 Biometris, Wageningen University and Research, Wageningen, The Netherlands 5 July 25, 2018 6 Running head: Genotype imputation 7 Key words: Genotype imputation, genotyping by sequencing, hidden Markov model, cross 8 pollinated (CP) population, multiparent advanced generation intercross (MAGIC) 9 *Corresponding author: 10 Chaozhi Zheng 11 Biometris 12 Wageningen University and Research 13 PO Box 16, 6700AA Wageningen 14 The Netherlands 15 Email: [email protected] 1 Copyright 2018. 16 Abstract 17 Many different types of multiparental populations have recently been produced to increase ge- 18 netic diversity and resolution in quantitative trait loci (QTL) mapping. Low coverage geno- 19 typing by sequencing (GBS) technology has become a cost effective tool in these populations, 20 despite large amounts of missing data in offspring and founders. In this work, we present a 21 general statistical framework for genotype imputation in such experimental crosses from low 22 coverage GBS data. Generalizing a previously developed hidden Markov model for calculating 23 ancestral origins of offspring DNA, we present an imputation algorithm that doesn’t require 24 parental data and that is applicable to bi- and multiparental populations. Our imputation al- 25 gorithm allows heterozygosity of parents and offspring as well as error correction in observed 26 genotypes. Further, our approach can combine imputation and genotype calling from sequenc- 27 ing reads, and it also applies to called genotypes from single nucleotide polymorphism (SNP) 28 array data.
    [Show full text]
  • 1000 Genomes-Based Imputation Identifies Novel and Refined
    European Journal of Human Genetics (2012) 20, 801–805 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg SHORT REPORT 1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data Jie Huang1, David Ellinghaus2, Andre Franke2, Bryan Howie3 and Yun Li*,4 We hypothesize that imputation based on data from the 1000 Genomes Project can identify novel association signals on a genome-wide scale due to the dense marker map and the large number of haplotypes. To test the hypothesis, the Wellcome Trust Case Control Consortium (WTCCC) Phase I genotype data were imputed using 1000 genomes as reference (20100804 EUR), and seven case/control association studies were performed using imputed dosages. We observed two ‘missed’ disease- associated variants that were undetectable by the original WTCCC analysis, but were reported by later studies after the 2007 WTCCC publication. One is within the IL2RA gene for association with type 1 diabetes and the other in proximity with the CDKN2B gene for association with type 2 diabetes. We also identified two refined associations. One is SNP rs11209026 in exon 9 of IL23R for association with Crohn’s disease, which is predicted to be probably damaging by PolyPhen2. The other refined variant is in the CUX2 gene region for association with type 1 diabetes, where the newly identified top SNP rs1265564 has an association P-value of 1.68Â10À16. The new lead SNP for the two refined loci provides a more plausible explanation for the disease association. We demonstrated that 1000 Genomes-based imputation could indeed identify both novel (in our case, ‘missed’ because they were detected and replicated by studies after 2007) and refined signals.
    [Show full text]
  • The Use of Genomic Data and Imputation Methods in Dairy Cattle Breeding
    Review Czech Journal of Animal Science, 65, 2020 (12): 445–453 https://doi.org/10.17221/83/2020-CJAS The use of genomic data and imputation methods in dairy cattle breeding Anita Klímová1,2*, Eva Kašná2, Karolína Machová1, Michaela Brzáková2, Josef Přibyl2, Luboš Vostrý1 1Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague – Suchdol, Czech Republic 2Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Prague – Uhříněves, Czech Republic *Corresponding author: [email protected] Citation: Klímová A., Kašná E., Machová K., Brzáková M., Přibyl J., Vostrý L. (2020): The use of genomic data and im- putation methods in dairy cattle breeding. Czech J. Anim. Sci., 65: 445–453. Abstract: The inclusion of animal genotype data has contributed to the development of genomic selection. Ani- mals are selected not only based on pedigree and phenotypic data but also on the basis of information about their genotypes. Genomic information helps to increase the accuracy of selection of young animals and thus enables a reduction of the generation interval. Obtaining information about genotypes in the form of SNPs (single nucleotide polymorphisms) has led to the development of new chips for genotyping. Several methods of genomic comparison have been developed as a result. One of the methods is data imputation, which allows the missing SNPs to be calculated using low-density chips to high-density chips. Through imputations, it is possible to com- bine information from diverse sets of chips and thus obtain more information about genotypes at a lower cost.
    [Show full text]
  • Imputation Accuracy from Low to Moderate Density Single Nucleotide Polymorphism Chips in a Thai Multibreed Dairy Cattle Population
    464 Open Access Asian Australas. J. Anim. Sci. Vol. 29, No. 4 : 464-470 April 2016 http://dx.doi.org/10.5713/ajas.15.0291 www.ajas.info pISSN 1011-2367 eISSN 1976-5517 Imputation Accuracy from Low to Moderate Density Single Nucleotide Polymorphism Chips in a Thai Multibreed Dairy Cattle Population Danai Jattawa, Mauricio A. Elzo1, Skorn Koonawootrittriron*, and Thanathip Suwanasopee Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand ABSTRACT: The objective of this study was to investigate the accuracy of imputation from low density (LDC) to moderate density SNP chips (MDC) in a Thai Holstein-Other multibreed dairy cattle population. Dairy cattle with complete pedigree information (n = 1,244) from 145 dairy farms were genotyped with GeneSeek GGP20K (n = 570), GGP26K (n = 540) and GGP80K (n = 134) chips. After checking for single nucleotide polymorphism (SNP) quality, 17,779 SNP markers in common between the GGP20K, GGP26K, and GGP80K were used to represent MDC. Animals were divided into two groups, a reference group (n = 912) and a test group (n = 332). The SNP markers chosen for the test group were those located in positions corresponding to GeneSeek GGP9K (n = 7,652). The LDC to MDC genotype imputation was carried out using three different software packages, namely Beagle 3.3 (population-based algorithm), FImpute 2.2 (combined family- and population-based algorithms) and Findhap 4 (combined family- and population-based algorithms). Imputation accuracies within and across chromosomes were calculated as ratios of correctly imputed SNP markers to overall imputed SNP markers. Imputation accuracy for the three software packages ranged from 76.79% to 93.94%.
    [Show full text]
  • Odyssey: a Semi-Automated Pipeline for Phasing, Imputation, and Analysis of Genome-Wide Genetic Data Ryan J
    Eller et al. BMC Bioinformatics (2019) 20:364 https://doi.org/10.1186/s12859-019-2964-5 METHODOLOGY ARTICLE Open Access Odyssey: a semi-automated pipeline for phasing, imputation, and analysis of genome-wide genetic data Ryan J. Eller1* , Sarath C. Janga2,3 and Susan Walsh1 Abstract Background: Genome imputation, admixture resolution and genome-wide association analyses are timely and computationally intensive processes with many composite and requisite steps. Analysis time increases further when building and installing the run programs required for these analyses. For scientists that may not be as versed in programing language, but want to perform these operations hands on, there is a lengthy learning curve to utilize the vast number of programs available for these analyses. Results: In an effort to streamline the entire process with easy-to-use steps for scientists working with big data, the Odyssey pipeline was developed. Odyssey is a simplified, efficient, semi-automated genome-wide imputation and analysis pipeline, which prepares raw genetic data, performs pre-imputation quality control, phasing, imputation, post-imputation quality control, population stratification analysis, and genome-wide association with statistical data analysis, including result visualization. Odyssey is a pipeline that integrates programs such as PLINK, SHAPEIT, Eagle, IMPUTE, Minimac, and several R packages, to create a seamless, easy-to-use, and modular workflow controlled via a single user-friendly configuration file. Odyssey was built with compatibility in mind, and thus utilizes the Singularity container solution, which can be run on Linux, MacOS, and Windows platforms. It is also easily scalable from a simple desktop to a High-Performance System (HPS).
    [Show full text]
  • Genotype Imputation for Genome-Wide Association Studies
    REVIEWS GENOME-WIDE ASSOCIATION STUDIES Genotype imputation for genome-wide association studies Jonathan Marchini* and Bryan Howie‡ Abstract | In the past few years genome-wide association (GWA) studies have uncovered a large number of convincingly replicated associations for many complex human diseases. Genotype imputation has been used widely in the analysis of GWA studies to boost power, fine-map associations and facilitate the combination of results across studies using meta-analysis. This Review describes the details of several different statistical methods for imputing genotypes, illustrates and discusses the factors that influence imputation performance, and reviews methods that can be used to assess imputation performance and test association at imputed SNPs. Hidden Markov model Genotype imputation is the term used to describe the genotypes based on the reference panel without taking A class of statistical model process of predicting or imputing genotypes that are the phenotype into account. Imputed genotypes at each that can be used to relate an not directly assayed in a sample of individuals. There SNP together with their inherent uncertainty are then observed process across the are several distinct scenarios in which genotype imputa- tested for association with the phenotype of interest in a genome to an underlying, unobserved process of interest. tion is desirable, but the term now most often refers to second stage. The advantage of the two-stage approach Such models have been used the situation in which a reference panel of haplotypes is that different phenotypes can be tested for association to estimate population at a dense set of SNPs is used to impute into a study without the need to redo the imputation.
    [Show full text]