Trace Elements in Anaerobic Biotechnologies

Total Page:16

File Type:pdf, Size:1020Kb

Trace Elements in Anaerobic Biotechnologies Trace Elements Biotechnologies in Anaerobic Trace Trace Elements in Anaerobic Biotechnologies Edited by Fernando G. Fermoso, Eric van Hullebusch, Gavin Collins, Jimmy Roussel, Ana Paula Mucha and Giovanni Esposito The use of trace elements to promote biogas production features prominently on the agenda for many biogas-producing companies. However, the application of the technique is often characterized by trial-and-error methodology due to the ambiguous and scarce basic knowledge on the impact of trace elements in anaerobic biotechnologies under different process conditions. This book describes and defines the broad landscape in the research area of trace elements in anaerobic biotechnologies, from the level of advanced chemistry and single microbial cells, through to engineering and bioreactor technology and to the fate of trace elements in the environment. The book results from the EU COST Action on ‘The ecological roles of trace metals in anaerobic biotechnologies’. Trace elements in anaerobic biotechnologies is a critical, exceptionally complex and technical Collins, Gavin Hullebusch, van Eric G. Fermoso, Fernando by Edited challenge. The challenging chemistry underpinning the availability of Esposito and Giovanni Mucha Roussel, Ana Paula Jimmy trace elements for biological uptake is very poorly understood, despite the importance of trace elements for successful anaerobic operations across the bioeconomy. This book discusses and places a common understanding of this challenge, with a strong focus on technological Trace Elements tools and solutions. The group of contributors brings together chemists with engineers, biologists, environmental scientists and mathematical modellers, as well as industry representatives, to show an up-to-date vision of the fate of trace elements on anaerobic biotechnologies. in Anaerobic Biotechnologies Edited by Fernando G. Fermoso, Eric van Hullebusch, Gavin Collins, iwapublishing.com Jimmy Roussel, Ana Paula Mucha and Giovanni Esposito @IWAPublishing ISBN: 9781789060218 (Paperback) ISBN: 9781789060225 (eBook) FundedFunded by the by Horizon the Horizon 2020 2020Fr amew Frameworkork Pr ogramme Programme of theof Euthero Europeanpean Unio Unionn Trace Elements in Anaerobic Biotechnologies Trace Elements in Anaerobic Biotechnologies Edited by Fernando G. Fermoso, Eric van Hullebusch, Gavin Collins, Jimmy Roussel, Ana Paula Mucha and Giovanni Esposito Published by IWA Publishing Alliance House 12 Caxton Street London SW1H 0QS, UK Telephone: +44 (0)20 7654 5500 Fax: +44 (0)20 7654 5555 Email: [email protected] Web: www.iwapublishing.com First published 2019 © 2019 IWA Publishing Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of photographic reproduction, in accordance with the terms of licenses issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to IWA Publishing at the address printed above. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for errors or omissions that may be made. Disclaimer The information provided and the opinions given in this publication are not necessarily those of IWA and should not be acted upon without independent consideration and professional advice. IWA and the Editors and Authors will not accept responsibility for any loss or damage suffered by any person acting or refraining from acting upon any material contained in this publication. British Library Cataloguing in Publication Data A CIP catalogue record for this book is available from the British Library ISBN: 9781789060218 (print) ISBN: 9781789060225 (eBook) DOI: 10.2166/9781789060225 This eBook was made Open Access in June 2019 © 2019 The Author(s) This is an Open Access book distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/). Cover: icons from Flaticon. This publication is based upon work from COST Action, supported by COST (European Cooperation in Science and Technology. COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. www.cost.eu Contents About the Editors ....................................... xiii List of Contributors .................................... xvii Chapter 1 Biogeochemistry of major elements in anaerobic digesters: carbon, nitrogen, phosphorus, sulfur and iron ............. 1 Eric D. van Hullebusch, Sepehr Shakeri Yekta, Baris Calli and Fernando G. Fermoso 1.1 Introduction . 2 1.2 Carbon Biogeochemistry in Anaerobic Digesters . 3 1.3 Nitrogen Biogeochemistry in Anaerobic Digesters . 6 1.4 Phosphorus Biogeochemistry in Anaerobic Digesters . 9 1.5 Iron Biogeochemistry in Anaerobic Digesters . 10 1.6 Sulfur Biogeochemistry in Anaerobic Digesters . 12 1.7 Major Elements Biogeochemistry Interplay in Anaerobic Digesters . 15 1.8 Concluding Remarks . 17 Acknowledgements . 17 References . 18 viii Trace Elements in Anaerobic Biotechnologies Chapter 2 Biogeochemistry of trace elements in anaerobic digesters 23 Lucian C. Staicu, Stephane Simon, Gilles Guibaud, Sepehr Shakeri Yekta, Baris Calli, Jan Bartacek, Fernando G. Fermoso and Eric D. van Hullebusch 2.1 Introduction . 24 2.2 Total Versus Bioavailable Trace Elements . 25 2.3 Biogeochemical Processes . 27 2.3.1 Introduction . 27 2.3.2 Non-redox sensitive elements . 28 2.3.3 Redox-sensitive elements . 30 2.4 How to Assess Speciation and Bioavailability of TE in Anaerobic Digesters . 35 2.4.1 Sampling . 36 2.4.2 TE speciation in liquid samples . 38 2.4.3 TE analysis in solid samples . 39 2.5 Concluding Remarks . 43 Acknowledgements . 43 References . 43 Chapter 3 Trace element enzymes in reactions essential for anaerobic digestion ...................................... 51 Juan M. Gonzalez and Blaz Stres 3.1 Introduction . 52 3.2 Major Pathways and Trace-element Requirements in Anaerobic Digestion . 54 3.2.1 Organic carbon processing . 55 3.2.2 Nitrate and sulfate reduction . 58 3.2.3 Methanogenesis . 58 3.3 Major Enzymes Influenced by Trace Elements . 63 3.3.1 Methyl-coenzyme M reductase . 63 3.3.2 Heterodisulfide reductase . 64 3.3.3 Formylmethanofuran dehydrogenase . 64 3.4 Perspectives . 67 Acknowledgements . 68 References . 68 Contents ix Chapter 4 Engineering of trace-element supplementation ............ 73 Jimmy Roussel, Cynthia Carliell-Marquet, Adriana F. M. Braga, Mirco Garuti, Antonio Serrano and Fernando G. Fermoso 4.1 Introduction . 74 4.2 Management Tools . 76 4.3 Influence of Reactor Type on TE Supplementation . 78 4.4 Influence of Operational Conditions on TE Supplementation . 80 4.4.1 Organic loading rate . 80 4.4.2 Temperature . 81 4.4.3 Two phase anaerobic digestion/pH role . 82 4.4.4 Hydraulic retention time . 83 4.5 Importance of Feedstock Characterization on TE Supplementation . 84 4.5.1 Sulphide-rich feedstock . 84 4.5.2 Phosphate-rich feedstock . 85 4.5.3 Lipid-rich feedstock . 88 4.5.4 Lignocellulosic waste . 90 4.6 Conclusion . 92 References . 92 Chapter 5 Mathematical modelling of trace element dynamics in anaerobic digestion environments ....................... 101 Bikash Chandra Maharaj, Maria Rosaria Mattei, Luigi Frunzo, Artin Hatzikioseyian, Eric D. van Hullebusch Piet N. L. Lens and Giovanni Esposito 5.1 Introduction . 102 5.2 Mathematical Modelling of Sulfur and Phosphorus Cycles in Anaerobic Digestion Systems . 106 5.2.1 Sulfur modelling . 106 5.2.2 Phosphorus modelling . 112 5.3 Mathematical Modelling of Physicochemical Processes in Anaerobic Digestion Systems . 113 5.3.1 Precipitation . 113 5.3.2 Adsorption . 126 5.3.3 Aqueous complexation . 129 5.4 Modelling the Effect of TEs on Biokinetics . 130 5.4.1 Modelling the biouptake of TEs . 130 5.4.2 Dose-response modelling of TE effect in AD . 132 5.5 Conclusion . 141 x Trace Elements in Anaerobic Biotechnologies References . 142 Appendix . 152 Notation . 152 Chapter 6 Assessing fate and bioavailability of trace elements in soils after digestate application ......................... 153 C. Marisa R. Almeida, Ishai Dror, Mirco Garuti, Malgorzata Grabarczyk, Emmanuel Guillon, Eric D. van Hullebusch, Andreina Laera, Nevenka Mikac, Jakub Munoz,̌ Dionisios Panagiotaras, Valdas Paulauskas, Santiago Rodriguez-Perez, Stephane Simon, Jan Šinko, Blaz Stres, Sergej Ustak,̌ Cecylia Wardak and Ana P. Mucha 6.1 Introduction . 155 6.2 Digestate – Production and Application on Soil . 156 6.2.1 Biogas plants: a general overview . 157 6.2.2 Separation of liquid and solid fraction of digestate . 158 6.2.3 Technologies for application of digestate on soils . 159 6.3 Soil Physico–Chemical Characteristics and Trace Element Mobility . 161 6.3.1 Total trace elements in soils . 161 6.3.2 Mechanisms regulating trace elements distribution in soils . ..
Recommended publications
  • Methanospirillum Hungatei GP1 As an S Layer MAX FIRTEL,1 GORDON SOUTHAM,1 GEORGE HARAUZ,2 and TERRY J
    JOURNAL OF BACTERIOLOGY, Dec. 1993, p. 7550-7560 Vol. 175, No. 23 0021-9193/93/237550-11$02.00/0 Copyright © 1993, American Society for Microbiology Characterization of the Cell Wall of the Sheathed Methanogen Methanospirillum hungatei GP1 as an S Layer MAX FIRTEL,1 GORDON SOUTHAM,1 GEORGE HARAUZ,2 AND TERRY J. BEVERIDGE'* Department ofMicrobiology' and Department ofMolecular Biology and Genetics, 2 College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1 Received 16 June 1993/Accepted 27 September 1993 The cell wall of MethanospiriUum hungatei GP1 is a labile structure that has been difficult to isolate and Downloaded from characterize because the cells which it encases are contained within a sheath. Cell-sized fragments, 560 nm wide by several micrometers long, of cell wall were extracted by a novel method involving the gradual drying of the filaments in 2% (wtlvol) sodium dodecyl sulfate and 10%0 (wt/vol) sucrose in 50 mM N-2-hydroxyeth- ylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer containing 10 mM EDTA. The surface was a hexagonal array (a = b = 15.1 nm) possessing a helical superstructure with a ca. 2.50 pitch angle. In shadowed relief, the smooth outer face was punctuated with deep pits, whereas the inner face was relatively featureless. Computer-based two-dimensional reconstructed views of the negatively stained layer demonstrated 4.0- and 2.0-nm-wide electron-dense regions on opposite sides of the layer likely corresponding to the openings of funnel-shaped channels. The face featuring the larger openings best corresponds to the outer face of the layer.
    [Show full text]
  • Super-Compost at Missouri Organic 7700 E
    Soil Regeneration Super-Compost at Missouri Organic 7700 E. US 40 Highway, KC, MO 64129 Winter 2017 Since June 2016, a few of us have worked together to make a better commercial compost. Our team collaborated with the goal to produce a “premium compost” able to deliver consistent, reliable results for effective use in commercial food production, horticulture and landscaping. Kevin Anderson, Vice President of Missouri Organic, was enthusiastic, did his own research, contributed his own ideas and materials. Despite setbacks, Kevin persisted to advance this effort a huge leap forward. In a recent email, Kevin set the bar high for our first test batch by naming it carbon that increases water-holding capacity and improves "super-compost." I’m confident we can deliver that quality – fertilizer efficiency. This boosts Cation Exchange Capacity but maybe not fully on the first try. (CEC), and adds Anion Exchange Capacity (AEC) to also capture nitrogen and phosphorus. Finally, the biomass is Monday January 30, we built the first experimental inoculated by a broader diversity of microbes beyond the usual digesting bacteria. The ultimate result of these improvements is compost with measurably higher fertility, higher performance, higher yield, and higher quality crops. Our first experiment began as a 300-foot long, 900- cubic-yard windrow of ground yard waste, with restaurant and retail food waste. Assorted minerals were blended into biochar, then moistened with wood vinegar and sea minerals. This was spread on top of the windrow. After two passes with a compost turner, minerals and biochar were nicely, finely mixed into a soft, porous pile of biomass.
    [Show full text]
  • Effects of Soil Remineralization by Rock Dust on the Emergence and Early Growth of Banana (Musa Acuminata) Smart M.O., Adesida O.A., Okunlola T.O., Isola J.O
    GSJ: Volume 7, Issue 9, September 2019 ISSN 2320-9186 763 GSJ: Volume 7, Issue 9, September 2019, Online: ISSN 2320-9186 www.globalscientificjournal.com EFFECTS OF SOIL REMINERALIZATION BY ROCK DUST ON THE EMERGENCE AND EARLY GROWTH OF BANANA (MUSA ACUMINATA) SMART M.O., ADESIDA O.A., OKUNLOLA T.O., ISOLA J.O ABSTRACT The study evaluated the effects of soil remineralization by rock dust on the emergence and early growth of Banana (Musa acuminata). Pot experiments were conducted to determine the effect of remineralization of soil using granite and basalt rock dusts as soil remineralizers. There were seven treatments including control used for the experiment and these were replicated four times. The treatments were T1 (0.5tons/ha of granite dust per 2kg of top soil), T2 (0.5tons/ha of basalt dust per 2kg of top soil), T3 (1.0tons/ha of granite dust per 2kg of top soil), T4 (1.0tons/ha of basalt dust per 2kg of top soil), T5 (1.5tons/ha of granite dust per 2kg of top soil), T6 (1.5tons/ha of basalt dust per 2kg of top soil), T7 (Control). The experiment was laid out in Completely Randomized Design (CRD). Data were collected on days of emergence, number of leaves, plant height (cm) and stem girth (cm) for 5 weeks. Watering was done twice daily both in the morning and evening. Data collected were subjected to Analysis of Variance (ANOVA) and no significance means among the treatments except for number of leaves at 0.05 level of significance. The results showed that T6 (1.5tons/ha basalt) had the best mean days to emergence (16.75) while T7 (control) had the least mean performance for emergence (33.50).
    [Show full text]
  • Six Steps for Organic Lawn Care
    GRASSROOTS HEALTHY LAWN PROGRAM Six Steps for Organic Lawn Care Step One: March/April Soil Test A soil test tells you what condition the soil is in and what kinds of amendments it might need. Using a clean sampling tube, take samples from various locations on the property (more samples for larger properties) at a 4 to 5 inch depth. Remove debris (roots, thatch) from the top of the sample, air dry overnight, mix the samples thoroughly and send a one cup of the mixture to the lab. Request a standard test which usually includes soil pH, calcium, magnesium and potassium levels, phosphorus levels and Cation Exchange Capacity. You should also request percent of organic matter. Basic soil testing is available from the Cornell Cooperative Extension (instructions and fee schedules are posted on the website) and other providers. More complex microbiology tests are offered by the Soil Foodweb (631) 474-8848. Basic tests range from $15 to $40 and biology tests range from $85 to $225. Aeration Compaction is the number one enemy of turfgrass, and is the most common problem faced by turf managers, particularly on playing fields with heavy traffic. Compacted soil prevents turf roots from penetrating deep into the soil profile (turf roots grow in the air spaces between soil particles). If the soil is compacted (to the point where a penetrometer reads more than 200 pounds per square inch in the top 3 inches of soil, aeration is required, using either a core or slice aerator. Aeration is stressful for turf and should only be undertaken when the grass is actively growing, but can be performed as often as every two to four weeks when necessary.
    [Show full text]
  • Taxonomy and Ecology of Methanogens
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Horizon / Pleins textes FEMS Microbiology Reviews 87 (1990) 297-308 297 Pubfished by Elsevier FEMSRE 00180 Taxonomy and ecology of methanogens J.L. Garcia Laboratoire de Microbiologie ORSTOM, Université de Provence, Marseille, France Key words: Methanogens; Archaebacteria; Taxonomy; Ecology 1. INTRODUCTION methane from CO2 using alcohols as hydrogen donors; 2-propanol is oxidized to acetone, and More fhan nine reviews on taxonomy of 2-butanol to 2-butanone. Carbon monoxide may methanogens have been published during the last also be converted into methane; most hydro- decade [l-91, after the discovery of the unique genotrophic species (60%) will also use formate. biochemical and genetic properties of these Some aceticlastic species are incapable of oxidiz- organisms led to the concept of Archaebacteria at ing H,. The aceticlastic species of the genus the end of the seventies. Moreover, important Methanosurcina are the most metabolically diverse economic factors have ,placed these bacteria in the methanogens, whereas the obligate aceticlastic limelight [5], including the need to develop alter- Methanosaeta (Methanothrix) can use only acetate. native forms of energy, xenobiotic pollution con- The taxonomy of the methanogenic bacteria trol, the enhancement of meat yields in the cattle has been extensively revised in the light of new industry, the distinction between biological and information based on comparative studies of 16 S thermocatalytic petroleum generation, and the rRNA oligonucleotide sequences, membrane lipid global distribution of methane in the earth's atmo- composition, and antigenic fingerprinting data. sphere. The phenotypic characteristics often do not pro- vide a sufficient means of distinguishing among taxa or determining the phylogenetic position of a 2.
    [Show full text]
  • Archaea in Coastal Marine Environments (Achabaterla/Phyoey/Batwe Nt/N a Eclogu) EDWARD F
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 5685-5689, June 1992 Ecology Archaea in coastal marine environments (achabaterla/phyoey/batwe nt/n a eclogU) EDWARD F. DELONG* Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 Communicated by George N. Somero, March 17, 1992 (receivedfor review February 4, 1992) ABSTRACT Archaea (archaebacteria) are a phenotypi- macroaggregate samples, eubacterial- or archaeal-biased cally diverse group of microorganisms that share a common PCR primers were routinely used to exclude the amplification evolutionary history. There are four general phenotypic groups of eukaryotic ribosomal RNA-encoding DNA (rDNA). Sur- of archaea: the methanogens, the extreme halophiles, the prisingly, archaeal rDNA was detected in many samples. sulfate-reducing archaea, and the extreme thermophiles. In the This report describes the detection of two marine archaeal marine environment, archaeal habitats are generally limited to lineages and their preliminary phylogenetic and ecological shallow or deep-sea anaerobic sediments (free-living and en- characterization. dosymbiotic methanogens), hot springs or deep-sea hydrother- mal vents (methanogens, sulfate reducers, and extreme ther- mophiles), and highly saline land-locked seas (halophiles). This METHODS report provides evidence for the widespread occurrence of Bacterioplankton Collection. Coastal water samples were unusual archaea in oxygenated coasl surface waters of North collected and screened through a 10-L&m Nytex mesh prefil- America. Quantitative mates indicated that up to 2% ofthe ter. Bacterioplankton were concentrated from these 10-pm- total ribosomal RNA extracted fom coastal bacterioplankton filtered water samples by using a CH2PR filtration unit assemblages was archaeal. Archaeal small-subunit ribosomal (Amicon) fitted with a polysulfone hollow-fiber filter (30-kDa RNA-encoding DNAs (rDNAs) were coned from mixed bac- cutoff).
    [Show full text]
  • See Pages 40 to 44 January 2013
    Rising out of the dust January40 JANUARY 2013 2013 see Pages 40www .kitchengarden.co.ukto 44 Eat your minErals Minerals and trace elements are essential to human health, and the mineral content of our food has dropped alarmingly. One study, published in Nutrition and Health in 2003, compares the mineral content of a range of foods, including 27 vegetables, over the period 1940 to 1991. Taking the 27 vegetables overall, sodium dropped by an average of 49%, potassium by 16%, magnesium by 24%, calcium by 46%, iron Cameron spreads rock dust on half of Terrace four for a growing trial. by 27% and copper by 76%. The study notes that you would need to have eaten 10 tomatoes in 1991 to obtain the same amount of copper as one would have given you in 1940. It cannot be proved that this is a direct result of the loss of minerals from the soil, nor that the minerals in crops were already in decline before 1940, since there is insufficient earlier data. Agrochemicals – introduced around 1940 – may well be a factor. However, an analysis comparing one of the Thomsons’ Rockdust-grown carrots with a chemically-grown supermarket one does suggest that crops grown in remineralised soil are correspondingly mineral-rich. It found that the Thomsons’ carrot had up to 10 times the mineral content: 14,380mg of calcium per kilogram as opposed to 4815mg, for instance, and 290.3mg of iron compared to 39.77mg. How to usE became a committed supporter, and ended up trialled and tested sEEr rockdust offering them a house and as much land as they In terms of demonstrating the effectiveness of needed.
    [Show full text]
  • Methanogenic Microorganisms in Industrial Wastewater Anaerobic Treatment
    processes Review Methanogenic Microorganisms in Industrial Wastewater Anaerobic Treatment Monika Vítˇezová 1 , Anna Kohoutová 1, Tomáš Vítˇez 1,2,* , Nikola Hanišáková 1 and Ivan Kushkevych 1,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (M.V.); [email protected] (A.K.); [email protected] (N.H.) 2 Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic * Correspondence: [email protected] (T.V.); [email protected] (I.K.); Tel.: +420-549-49-7177 (T.V.); +420-549-49-5315 (I.K.) Received: 31 October 2020; Accepted: 24 November 2020; Published: 26 November 2020 Abstract: Over the past decades, anaerobic biotechnology is commonly used for treating high-strength wastewaters from different industries. This biotechnology depends on interactions and co-operation between microorganisms in the anaerobic environment where many pollutants’ transformation to energy-rich biogas occurs. Properties of wastewater vary across industries and significantly affect microbiome composition in the anaerobic reactor. Methanogenic archaea play a crucial role during anaerobic wastewater treatment. The most abundant acetoclastic methanogens in the anaerobic reactors for industrial wastewater treatment are Methanosarcina sp. and Methanotrix sp. Hydrogenotrophic representatives of methanogens presented in the anaerobic reactors are characterized by a wide species diversity. Methanoculleus
    [Show full text]
  • 2009Campbelllphd.Pdf
    Campbell, Nicola S. (2009) The use of rockdust and composted materials as soil fertility amendments. PhD thesis. http://theses.gla.ac.uk/617/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] The Use of Rockdust and Composted Materials as Soil Fertility Amendments Nicola S. Campbell BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Glasgow February 2009 Nicola S. Campbell, 2009 Abstract This thesis aims to investigate the use of two materials: rockdust and greenwaste compost for use as soil fertility amendments. A field trial was conducted over three years to investigate the impact these materials had on plant yield, plant nutrient content, soil chemistry and soil microbial communities in direct comparison with chemical fertilizer and farmyard manure. There were annual applications of compost, manure and chemical fertilizer in spring with one rockdust application in the autumn prior to the first year of the trial. Two harvests were carried out each year in summer and autumn to determine differences in plant yield.
    [Show full text]
  • To Love and Regenerate the Earth: Further Perspectives On
    To Love And Regenerate The Earth: Further Perspectives On Written and Compiled by Don Weaver, Co-Author of FERTILE GROUND by Rob Schouten ã 1995 To Love And Regenerate The Earth: Further Perspectives on The Survival of Civilization. Written and compiled by Don Weaver. Copyright 2002 by Don Weaver, to protect the wholeness and integrity of this work. Communications may be addressed to: Don Weaver Earth Health Regeneration POB 620478 Woodside, CA 94062-0478 e-mail: [email protected] The purpose of this book is to offer the world's responsible people a non-commercial gift of potentially world-transforming information, ideas, and insights on the social, ecological and climatic problems now threatening the future of humanity and the whole Biosphere. Also, to offer potential solutions which respond to the causes of these problems, and which might empower us to wisely regenerate the Biosphere and restore health and balance to the sociosphere. The author/editor is an independent (and interdependent) volunteer researcher hoping to encourage humanity's continued awakening, as well as "the progress of Science and useful Arts," one of the Constitutionally stated purposes of copyright law. In quoting from a broad spectrum of journals, websites, and books, I did not intend to substitute for them nor discourage careful, open-minded study of the entirety of them, nor do I in any way discourage their purchase if for sale. I found very helpful, as you may, the information and guidelines on the Fair Use privilege in books and websites on the topic. Especially comprehensive is the Fifth Edition (Feb.
    [Show full text]
  • Enabling Food Security Through Use of Local Rocks and Minerals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Newcastle University E-Prints 1 1 Extractive Industries and Society, 2018, in press 2 3 4 Enabling food security through use of local rocks and minerals 5 6 David A C Manning 7 School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 8 7RU, UK 9 [email protected] 10 11 Suzi Huff Theodoro 12 Universidade de Brasília/ UnB, Postgraduate Program in Environment and Rural Development / PPG- 13 MADER Brasília/DF. Brazil 14 [email protected] 15 16 17 18 Abstract 19 20 In many developing countries, replacement of the nutrients needed to produce subsistence and 21 cash crops is a major challenge, because of cost and long/complex supply chains. Nutrient audits 22 show that major nutrients are being removed from soils faster than they are being replenished, 23 which is clearly unsustainable. The use of crushed silicate rocks as a source of plant nutrients 24 predates the use of the chemical fertilizers that have revolutionised global agriculture. Such highly 2 25 soluble fertilizers are not ideal for the deeply leached oxisols widespread in the global south, and 26 are rapidly leached. In these soils, silica may also need to be added as nutrient. In these 27 circumstances, crushed silicate rocks have great potential to maintain soil health and to support 28 crop production. In Brazil crushed rock remineralizers have been developed, and Brazilian federal 29 law allows these to be used for crop nutrition, with specifications clearly defined by appropriate 30 regulation.
    [Show full text]
  • Rare Horizontal Gene Transfer in a Unique Motility Structure Elie Desmond, Céline Brochier-Armanet, Simonetta Gribaldo
    Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure Elie Desmond, Céline Brochier-Armanet, Simonetta Gribaldo To cite this version: Elie Desmond, Céline Brochier-Armanet, Simonetta Gribaldo. Phylogenomics of the archaeal flagel- lum: rare horizontal gene transfer in a unique motility structure. BMC Evolutionary Biology, BioMed Central, 2007, 7, pp.53-70. 10.1186/1471-2148-7-106. hal-00698404 HAL Id: hal-00698404 https://hal.archives-ouvertes.fr/hal-00698404 Submitted on 7 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License BMC Evolutionary Biology BioMed Central Research article Open Access Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure Elie Desmond1, Celine Brochier-Armanet2,3 and Simonetta Gribaldo*1 Address: 1Unite Biologie Moléculaire du Gène chez les Extremophiles, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, 2Université de Provence Aix-Marseille
    [Show full text]