Applied C and C++ Programming
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
5. Data Types
IEEE FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011 5. Data types The e language has a number of predefined data types, including the integer and Boolean scalar types common to most programming languages. In addition, new scalar data types (enumerated types) that are appropriate for programming, modeling hardware, and interfacing with hardware simulators can be created. The e language also provides a powerful mechanism for defining OO hierarchical data structures (structs) and ordered collections of elements of the same type (lists). The following subclauses provide a basic explanation of e data types. 5.1 e data types Most e expressions have an explicit data type, as follows: — Scalar types — Scalar subtypes — Enumerated scalar types — Casting of enumerated types in comparisons — Struct types — Struct subtypes — Referencing fields in when constructs — List types — The set type — The string type — The real type — The external_pointer type — The “untyped” pseudo type Certain expressions, such as HDL objects, have no explicit data type. See 5.2 for information on how these expressions are handled. 5.1.1 Scalar types Scalar types in e are one of the following: numeric, Boolean, or enumerated. Table 17 shows the predefined numeric and Boolean types. Both signed and unsigned integers can be of any size and, thus, of any range. See 5.1.2 for information on how to specify the size and range of a scalar field or variable explicitly. See also Clause 4. 5.1.2 Scalar subtypes A scalar subtype can be named and created by using a scalar modifier to specify the range or bit width of a scalar type. -
Occam 2.1 Reference Manual
occam 2.1 reference manual SGS-THOMSON Microelectronics Limited May 12, 1995 iv occam 2.1 REFERENCE MANUAL SGS-THOMSON Microelectronics Limited First published 1988 by Prentice Hall International (UK) Ltd as the occam 2 Reference Manual. SGS-THOMSON Microelectronics Limited 1995. SGS-THOMSON Microelectronics reserves the right to make changes in specifications at any time and without notice. The information furnished by SGS-THOMSON Microelectronics in this publication is believed to be accurate, but no responsibility is assumed for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No licence is granted under any patents, trademarks or other rights of SGS-THOMSON Microelectronics. The INMOS logo, INMOS, IMS and occam are registered trademarks of SGS-THOMSON Microelectronics Limited. Document number: 72 occ 45 03 All rights reserved. No part of this publication may be reproduced, stored in a retrival system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission, in writing, from SGS-THOMSON Microelectronics Limited. Contents Contents v Contents overview ix Preface xi Introduction 1 Syntax and program format 3 1 Primitive processes 5 1.1 Assignment 5 1.2 Communication 6 1.3 SKIP and STOP 7 2 Constructed processes 9 2.1 Sequence 9 2.2 Conditional 11 2.3 Selection 13 2.4 WHILE loop 14 2.5 Parallel 15 2.6 Alternation 19 2.7 Processes 24 3 Data types 25 3.1 Primitive data types 25 3.2 Named data types 26 3.3 Literals -
Bubble Sort: an Archaeological Algorithmic Analysis
Bubble Sort: An Archaeological Algorithmic Analysis Owen Astrachan 1 Computer Science Department Duke University [email protected] Abstract 1 Introduction Text books, including books for general audiences, in- What do students remember from their first program- variably mention bubble sort in discussions of elemen- ming courses after one, five, and ten years? Most stu- tary sorting algorithms. We trace the history of bub- dents will take only a few memories of what they have ble sort, its popularity, and its endurance in the face studied. As teachers of these students we should ensure of pedagogical assertions that code and algorithmic ex- that what they remember will serve them well. More amples used in early courses should be of high quality specifically, if students take only a few memories about and adhere to established best practices. This paper is sorting from a first course what do we want these mem- more an historical analysis than a philosophical trea- ories to be? Should the phrase Bubble Sort be the first tise for the exclusion of bubble sort from books and that springs to mind at the end of a course or several courses. However, sentiments for exclusion are sup- years later? There are compelling reasons for excluding 1 ported by Knuth [17], “In short, the bubble sort seems discussion of bubble sort , but many texts continue to to have nothing to recommend it, except a catchy name include discussion of the algorithm after years of warn- and the fact that it leads to some interesting theoreti- ings from scientists and educators. -
Floating-Point Exception Handing
ISO/IEC JTC1/SC22/WG5 N1372 Working draft of ISO/IEC TR 15580, second edition Information technology ± Programming languages ± Fortran ± Floating-point exception handing This page to be supplied by ISO. No changes from first edition, except for for mechanical things such as dates. i ISO/IEC TR 15580 : 1998(E) Draft second edition, 13th August 1999 ISO/IEC Foreword To be supplied by ISO. No changes from first edition, except for for mechanical things such as dates. ii ISO/IEC Draft second edition, 13th August 1999 ISO/IEC TR 15580: 1998(E) Introduction Exception handling is required for the development of robust and efficient numerical software. In particular, it is necessary in order to be able to write portable scientific libraries. In numerical Fortran programming, current practice is to employ whatever exception handling mechanisms are provided by the system/vendor. This clearly inhibits the production of fully portable numerical libraries and programs. It is particularly frustrating now that IEEE arithmetic (specified by IEEE 754-1985 Standard for binary floating-point arithmetic, also published as IEC 559:1989, Binary floating-point arithmetic for microprocessor systems) is so widely used, since built into it are the five conditions: overflow, invalid, divide-by-zero, underflow, and inexact. Our aim is to provide support for these conditions. We have taken the opportunity to provide support for other aspects of the IEEE standard through a set of elemental functions that are applicable only to IEEE data types. This proposal involves three standard modules: IEEE_EXCEPTIONS contains a derived type, some named constants of this type, and some simple procedures. -
Data Structures & Algorithms
DATA STRUCTURES & ALGORITHMS Tutorial 6 Questions SORTING ALGORITHMS Required Questions Question 1. Many operations can be performed faster on sorted than on unsorted data. For which of the following operations is this the case? a. checking whether one word is an anagram of another word, e.g., plum and lump b. findin the minimum value. c. computing an average of values d. finding the middle value (the median) e. finding the value that appears most frequently in the data Question 2. In which case, the following sorting algorithm is fastest/slowest and what is the complexity in that case? Explain. a. insertion sort b. selection sort c. bubble sort d. quick sort Question 3. Consider the sequence of integers S = {5, 8, 2, 4, 3, 6, 1, 7} For each of the following sorting algorithms, indicate the sequence S after executing each step of the algorithm as it sorts this sequence: a. insertion sort b. selection sort c. heap sort d. bubble sort e. merge sort Question 4. Consider the sequence of integers 1 T = {1, 9, 2, 6, 4, 8, 0, 7} Indicate the sequence T after executing each step of the Cocktail sort algorithm (see Appendix) as it sorts this sequence. Advanced Questions Question 5. A variant of the bubble sorting algorithm is the so-called odd-even transposition sort . Like bubble sort, this algorithm a total of n-1 passes through the array. Each pass consists of two phases: The first phase compares array[i] with array[i+1] and swaps them if necessary for all the odd values of of i. -
Mark Vie Controller Standard Block Library for Public Disclosure Contents
GEI-100682AC Mark* VIe Controller Standard Block Library These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met during installation, operation, and maintenance. The information is supplied for informational purposes only, and GE makes no warranty as to the accuracy of the information included herein. Changes, modifications, and/or improvements to equipment and specifications are made periodically and these changes may or may not be reflected herein. It is understood that GE may make changes, modifications, or improvements to the equipment referenced herein or to the document itself at any time. This document is intended for trained personnel familiar with the GE products referenced herein. Public – This document is approved for public disclosure. GE may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not provide any license whatsoever to any of these patents. GE provides the following document and the information included therein as is and without warranty of any kind, expressed or implied, including but not limited to any implied statutory warranty of merchantability or fitness for particular purpose. For further assistance or technical information, contact the nearest GE Sales or Service Office, or an authorized GE Sales Representative. Revised: July 2018 Issued: Sept 2005 © 2005 – 2018 General Electric Company. ___________________________________ * Indicates a trademark of General -
13 Basic Sorting Algorithms
Concise Notes on Data Structures and Algorithms Basic Sorting Algorithms 13 Basic Sorting Algorithms 13.1 Introduction Sorting is one of the most fundamental and important data processing tasks. Sorting algorithm: An algorithm that rearranges records in lists so that they follow some well-defined ordering relation on values of keys in each record. An internal sorting algorithm works on lists in main memory, while an external sorting algorithm works on lists stored in files. Some sorting algorithms work much better as internal sorts than external sorts, but some work well in both contexts. A sorting algorithm is stable if it preserves the original order of records with equal keys. Many sorting algorithms have been invented; in this chapter we will consider the simplest sorting algorithms. In our discussion in this chapter, all measures of input size are the length of the sorted lists (arrays in the sample code), and the basic operation counted is comparison of list elements (also called keys). 13.2 Bubble Sort One of the oldest sorting algorithms is bubble sort. The idea behind it is to make repeated passes through the list from beginning to end, comparing adjacent elements and swapping any that are out of order. After the first pass, the largest element will have been moved to the end of the list; after the second pass, the second largest will have been moved to the penultimate position; and so forth. The idea is that large values “bubble up” to the top of the list on each pass. A Ruby implementation of bubble sort appears in Figure 1. -
Fall, 2016 Lab #3
Texas Christian University CoSc 20803 - Fall, 2016 Lab #3 Points: 100 points Language: Java Due Date: Midnight, Thursday, Nov 17, 2016 (complete Java project and manually-generated Excel spreadsheet ZIPped together and submitted with TURNIN). Purpose: The purpose of this assignment is to allow you to evaluate the performance of several different sorting algorithms on data in various degrees of disorder. Processing: You should implement the following sorting algorithms and gather statistics as noted below: Method #1 Method #2 Method #3 Method #4 Bubblesort Cocktail Shaker Sort Shell Sort Quick Sort (pp. 230-232) (discussed in class) (discussed in class) (pp. 232-236) Input: Three input data sets will be provided (each of which contains 5000, 4-byte alphanumeric keys). The files are: Ascending.dat, Descending.dat, and Random.dat (obtainable from the CoSc Department’s class website: GUI: For this lab you should develop a manual data collection program that employs a VERY SIMPLE graphical user interface. Your program should accommodate input from the user specifying: a) the integer number of records to be sorted, b) the name of the input file to be used as the source of data (via a JFileChooser()), and c) the sorting method to use. Your program should allow the sorting methods listed above to be performed. Statistics: You should sort, ascendingly, alphanumeric keys in each of the three data files provided, keeping statistics for each file and for each sort method. Keep track of: (i) the number of key compares (Ki:Kj) and (ii) the number of key moves (e.g., Ki <--- Kj). -
Adaptivfloat: a Floating-Point Based Data Type for Resilient Deep Learning Inference
ADAPTIVFLOAT:AFLOATING-POINT BASED DATA TYPE FOR RESILIENT DEEP LEARNING INFERENCE Thierry Tambe 1 En-Yu Yang 1 Zishen Wan 1 Yuntian Deng 1 Vijay Janapa Reddi 1 Alexander Rush 2 David Brooks 1 Gu-Yeon Wei 1 ABSTRACT Conventional hardware-friendly quantization methods, such as fixed-point or integer, tend to perform poorly at very low word sizes as their shrinking dynamic ranges cannot adequately capture the wide data distributions commonly seen in sequence transduction models. We present AdaptivFloat, a floating-point inspired number representation format for deep learning that dynamically maximizes and optimally clips its available dynamic range, at a layer granularity, in order to create faithful encoding of neural network parameters. AdaptivFloat consistently produces higher inference accuracies compared to block floating-point, uniform, IEEE-like float or posit encodings at very low precision (≤ 8-bit) across a diverse set of state-of-the-art neural network topologies. And notably, AdaptivFloat is seen surpassing baseline FP32 performance by up to +0.3 in BLEU score and -0.75 in word error rate at weight bit widths that are ≤ 8-bit. Experimental results on a deep neural network (DNN) hardware accelerator, exploiting AdaptivFloat logic in its computational datapath, demonstrate per-operation energy and area that is 0.9× and 1.14×, respectively, that of equivalent bit width integer-based accelerator variants. (a) ResNet-50 Weight Histogram (b) Inception-v3 Weight Histogram 1 INTRODUCTION 105 Max Weight: 1.32 105 Max Weight: 1.27 Min Weight: -0.78 Min Weight: -1.20 4 4 Deep learning approaches have transformed representation 10 10 103 103 learning in a multitude of tasks. -
DRAFT1.2 Methods
HL7 v3.0 Data Types Specification - Version 0.9 Table of Contents Abstract . 1 1 Introduction . 2 1.1 Goals . 3 DRAFT1.2 Methods . 6 1.2.1 Analysis of Semantic Fields . 7 1.2.2 Form of Data Type Definitions . 10 1.2.3 Generalized Types . 11 1.2.4 Generic Types . 12 1.2.5 Collections . 15 1.2.6 The Meta Model . 18 1.2.7 Implicit Type Conversion . 22 1.2.8 Literals . 26 1.2.9 Instance Notation . 26 1.2.10 Typus typorum: Boolean . 28 1.2.11 Incomplete Information . 31 1.2.12 Update Semantics . 33 2 Text . 36 2.1 Introduction . 36 2.1.1 From Characters to Strings . 36 2.1.2 Display Properties . 37 2.1.3 Encoding of appearance . 37 2.1.4 From appearance of text to multimedial information . 39 2.1.5 Pulling the pieces together . 40 2.2 Character String . 40 2.2.1 The Unicode . 41 2.2.2 No Escape Sequences . 42 2.2.3 ITS Responsibilities . 42 2.2.4 HL7 Applications are "Black Boxes" . 43 2.2.5 No Penalty for Legacy Systems . 44 2.2.6 Unicode and XML . 47 2.3 Free Text . 47 2.3.1 Multimedia Enabled Free Text . 48 2.3.2 Binary Data . 55 2.3.3 Outstanding Issues . 57 3 Things, Concepts, and Qualities . 58 3.1 Overview of the Problem Space . 58 3.1.1 Concept vs. Instance . 58 3.1.2 Real World vs. Artificial Technical World . 59 3.1.3 Segmentation of the Semantic Field . -
Handwritten Digit Classication Using 8-Bit Floating Point Based Convolutional Neural Networks
Downloaded from orbit.dtu.dk on: Apr 10, 2018 Handwritten Digit Classication using 8-bit Floating Point based Convolutional Neural Networks Gallus, Michal; Nannarelli, Alberto Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Gallus, M., & Nannarelli, A. (2018). Handwritten Digit Classication using 8-bit Floating Point based Convolutional Neural Networks. DTU Compute. (DTU Compute Technical Report-2018, Vol. 01). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Handwritten Digit Classification using 8-bit Floating Point based Convolutional Neural Networks Michal Gallus and Alberto Nannarelli (supervisor) Danmarks Tekniske Universitet Lyngby, Denmark [email protected] Abstract—Training of deep neural networks is often con- In order to address this problem, this paper proposes usage strained by the available memory and computational power. of 8-bit floating point instead of single precision floating point This often causes it to run for weeks even when the underlying which allows to save 75% space for all trainable parameters, platform is employed with multiple GPUs. -
Sorting Algorithm 1 Sorting Algorithm
Sorting algorithm 1 Sorting algorithm A sorting algorithm is an algorithm that puts elements of a list in a certain order. The most-used orders are numerical order and lexicographical order. Efficient sorting is important for optimizing the use of other algorithms (such as search and merge algorithms) which require input data to be in sorted lists; it is also often useful for canonicalizing data and for producing human-readable output. More formally, the output must satisfy two conditions: 1. The output is in nondecreasing order (each element is no smaller than the previous element according to the desired total order); 2. The output is a permutation (reordering) of the input. Since the dawn of computing, the sorting problem has attracted a great deal of research, perhaps due to the complexity of solving it efficiently despite its simple, familiar statement. For example, bubble sort was analyzed as early as 1956.[1] Although many consider it a solved problem, useful new sorting algorithms are still being invented (for example, library sort was first published in 2006). Sorting algorithms are prevalent in introductory computer science classes, where the abundance of algorithms for the problem provides a gentle introduction to a variety of core algorithm concepts, such as big O notation, divide and conquer algorithms, data structures, randomized algorithms, best, worst and average case analysis, time-space tradeoffs, and upper and lower bounds. Classification Sorting algorithms are often classified by: • Computational complexity (worst, average and best behavior) of element comparisons in terms of the size of the list (n). For typical serial sorting algorithms good behavior is O(n log n), with parallel sort in O(log2 n), and bad behavior is O(n2).