Metadynamics Metainference with PLUMED

Total Page:16

File Type:pdf, Size:1020Kb

Metadynamics Metainference with PLUMED Metadynamics Metainference with PLUMED Max Bonomi University of Cambridge [email protected] Outline • Molecular Dynamics as a computational microscope: - sampling problems - accuracy of force fields • Enhanced sampling with biased MD: - metadynamics - recent developments • Combining simulations with experiments: Metainference • Addressing sampling and accuracy issues: M&M • The open source library PLUMED A computational microscope Molecular Dynamics (MD) evolves a system in time under the effect of a potential energy function How? By integrating Newton’s equations of motion m R¨ = V i i rRi The potential (or force field) is derived from - Higher accuracy calculations - Fitting experimental observables Limitations: • time scale accessible in standard MD • accuracy of classical force fields The time scale problem In MD, sampling efficiency is limited by the time scale accessible in typical simulations: ★ Activated events B ★ Slow diffusion A Dimensional reduction It is often possible to describe a physical/chemical process in terms of a small number of coarse descriptors of the system: S = S(R)=(S1(R),...,Sd(R)) Key quantity of thermodynamics is the free energy as a function of these variables: 1 1 F (S)= ln P (S) where β = −β kBT βU(R) canonical dβRF (Sδ()S S(R)) e− PF((SS))=e− − ensemble dR e βU(R) / R − R Examples Isomerization: dihedral angle Protein folding: gyration radius, number of contacts, ... Phase transitions: lattice vectors, bond order parameters, ... Rare events simplified likely unlikely likely How can we estimate a free energy difference if we never see a transition? Biased sampling The idea is to add a bias potential that acts on the collective variables: U(R) U(R)+V (S(R)) ! What is a good choice of bias potential? Biased sampling The idea is to add a bias potential that acts on the collective variables: U(R) U(R)+V (S(R)) ! What is a good choice of bias potential? Metadynamics History-dependent bias potential acting on selected degrees of freedom or Collective Variables (CVs) S =(S1(R),...,Sd(R)) t0<t d 2 (S S (R(t0))) V (S,t)=W exp i − i G − 2σ2 i=1 i ! t0=⌧GX,2⌧G,. X V (S,t )= F (S)+C G !1 − Laio & Parrinello PNAS 2002 REVIEW: Barducci, Bonomi, Parrinello WIREs Comput Mol Sci 2011 Pros and Cons Advantages • Enhanced sampling along the CVs • Reconstruction of the FES: V (S,t )= F (S)+C Bussi, Laio, Parrinello PRL 2006 G !1 − • A priori knowledge of the landscape not required Disadvantages • Lack of convergence in a single run • Overfilling • The choice of the CVs is not trivial Well-Tempered Metadynamics The initial Gaussian height w 0 is rescaled during the simulation: V (s,t) k ∆T w = w0 e− B where T + ∆ T is a fictitious CV temperature. • Convergence and overfilling issues solved: ∆T V (s,t) F (s) !T + ∆T • ∆ T used to tune the extent of exploration Barducci, Bussi, Parrinello PRL 2008 Choosing the right CVs A good set of CVs for metadynamics (and other biasing techniques) should: • Discriminate between initial and final states • Be as small as possible • Include all the slow modes of a process Metadynamics is inefficient with a large number of CVs. Possible strategies: • devise automatic protocols to find good CVs • improve metadynamics to deal with a large number of CVs • couple metadynamics with other methods, such as REM Parallel Bias Metadynamics Biasing a large number of CVs with WTMetaD is inefficient In PBMetaD we apply multiple low-dimensional bias potentials: V (S1,t),...,V(SN ,t) one at a time: P (R, ⌘) exp β U(R)+ ⌘ V (S ,t) t / − i i " i !# X where ⌘ =( ⌘ 1 ,..., ⌘ N ) switches on and off (and allows updating) one bias potential at a time Each bias potential converges to ∆T V (S ,t) F (S ) the corresponding free energy: i !T + ∆T i Pfaendtner & Bonomi JCTC 2015 Parallel Bias Metadynamics Since we are not interested in the ⌘ -distribution, we can marginalize this variable: P (R)= d⌘P (R, ⌘) exp [ β (U(R)+V (S,t))] t t / − PB where: Z 1 N V (S,t)= log exp [βV (S ,t)] PB −β − i i=1 X In order for each bias potential to converge to the corresponding free energy, we need a new rescaling rule: V (Si,t) ! = ! e− kB ∆Ti P (⌘ =1R) i 0,i i | where: exp [ βV (Si,t)] P (⌘i =1R)= − | N exp [ βV (S ,t)] j=1 − j Pfaendtner & Bonomi JCTC 2015 P Benchmark on a model system A B F (kBT) 2 s s1 s1 C D s1 2 T) ε B t * F (k s1 s2 2 T) ε B t * F (k s2 t (103 MC steps) Pfaendtner & Bonomi JCTC 2015 Improving the accuracy of force fields A more accurate description of a system can be achieved if we combine all the sources of information available Physics Statistics ? Experimental data How can we properly combine them? The challenges of data modeling a) Input b) Errors + Measurement+Prior Mixing Replica-Averaged Modelling +Camilloni et al. JACS 2012 Random Bayesian Modelling* Systematic *Rieping et al. Science 2005 Forward model c) Output Metainference: Ensemble of models Addressing these challenges a) Input b) Errors Measurement+Prior Mixing Random Metainference* *Bonomi et al. Science Advances 2016 Systematic Forward model c) Output Metainference: Ensemble of models To produce ensemble of models and determine their populations a) Input b) Errors Measurement+Prior Mixing Random Systematic Forward model c) Output Metainference: Ensemble of models 30% 20% 45% 5% Metainference Inspired by replica-averaged modelling, we consider a finite sample of the distribution of models (N replicas): 1 N f(X)= f(X ) N r r=1 X The Metainference energy function (or score) is: N N d 1 E (X, σ)=k T log p(X )+ (d f (X))2 + log σ log p(σ ) MI B · − r i − i 2σ2 r,i − r,i r=1 ( i=1 r,i ) X X where σ r,i includes all sources of errors: errors are negligible Replica-Averaged Modelling SEM 2 B 2 σr,i = (σr,i ) +(σr,i) data is not generated q by an ensemble SEM p and σr,i 1/ N Bayesian Modelling / Integrative Dynamical Biology We compare Metainference and replica- averaged modeling with real experimental data collected on ubiquitin: • Chemical Shifts + RDCs We also compare the Metainference ensemble with single structures: • X-ray (1UBQ) • NMR (1D3Z) Cα-RMSD = 0.52 Å and with the ensemble generated by standard MD Models are evaluated by fit with other exp data (RDCs, J3) Bonomi et al. Science Advances 2016 Ubiquitin ensembles a) Input b) Ensemble α βHB+ D52 D52 E24 G53 G53 E24 β ~35% βHB- βHB+ G53 φ α ~65% α ψ D52 d (E24 NH - D52 CO) (nm) d (E24 sc - G53 NH) (nm) c) Validation 3 3 JHNC JHNHA RDCs set 2 RDCs set 3 RMSD (Hz) Bonomi et al. Science Advances 2016 Chemical Shifts weights prior error = 0.08 PDF k [kJ/mol] Bonomi et al. Science Advances 2016 Metadynamic Metainference & Bonomi et al. Scientific Reports. 2016 Metadynamics Metainference Ensemble Metainference PBMetaD of replicas energy function bias (X1, σ1) VPB(S(X1),t) (X2, σ2) VPB(S(X2),t) }EMI(X, σ)+{ (XN , σN ) VPB(S(XN ),t) with these additional tricks: • replicas share the bias, as in multiple-walkers MetaD* • need to reweigh to calculate averages in the unbiased ensemble *Raiteri et al. JPCB 2006 Benchmark Our favorite test case: alanine dipeptide in vacuum The prior information is the AMBER99SB-ILDN force field* A Prior B Exact C Gaussian noise F (kJ/mol) rad) ( ψ Φ (rad) Φ (rad) Φ (rad) *Lindorff-Larsen et al. Proteins 2010 Benchmark We assume that the prior is inaccurate and that in the real distribution the relative weight of the two minima is different: A Prior B Exact C Gaussian noise F (kJ/mol) rad) ( ψ Φ (rad) Φ (rad) Φ (rad) We introduce synthetic experimental data as average distances between heavy atoms, calculated in the exact ensemble, + noise Results Gaussian noise Outliers noise A B C T) B F (kJ/mol) F RMSD (k Φ (rad) # data # data CD DE F T) B F (kJ/mol) F RMSD (k ψ (rad) # data # data Bonomi et al. Scientific Reports. 2016 Gaussian noise Outliers noise B σ1 σB σB 0 2 B σ3 B noerrors σ4 pdf Noise inference A B Gaussianabsence of errorsnoise Outlierssystematic noise errors B systematicerrors σ B B B 1 σ σ1 B σ B 0 σ0 2 B σ2 σ3 σB 3 noerrors σB B 4 σ4 pdf pdf pdf A B C D B B noise level systematicerrors B noiseσ level σ σ1 σB σB 0 2 B σ3 B σ4 Bonomi et al. Scientific Reports. 2016 pdf C D σB σB A Prior B Exact C Gaussian noise F Metainference alone (kJ/mol) rad) ( with PBMetaD ψ A Φ (rad) Φ (rad) Φ (rad) rad) ( Φ without PBMetaD 1 2 3 4 rad) ( Φ B 5 6 7 8 rad) ( ψ rad) ( Φ time (ns) time (ns) time (ns) time (ns) time (ns) The implementation depending on the physical problem: depending on physical distances, angles, ... problem/type of machine/... evaluate collective variables compute forces correct forces move atoms several possible algorithms e.g. umbrella sampling, metadynamics, ... PLUMED PLUGIN MD code evaluate collective variables compute forces correct forces move atoms Bonomi et al. CPC 2008 Tribello et al. CPC 2014 PLUMED PLUGIN MD codes gromacs compute forces lammps move atoms evaluate collective variables compute forces move atoms correct forces compute forces move atoms compute forces move atoms namd One open source pluging q-espresso for several MD codes! PLUgin for MEtaDynamics Why PLUMED? PLUgin for free-energy MEthoDs Bonomi et al.
Recommended publications
  • The Molecular Sciences Software Institute
    The Molecular Sciences Software Institute T. Daniel Crawford, Cecilia Clementi, Robert Harrison, Teresa Head-Gordon, Shantenu Jha*, Anna Krylov, Vijay Pande, and Theresa Windus http://molssi.org S2I2 HEP/CS Workshop at NCSA/UIUC 07 Dec, 2016 1 Outline • Space and Scope of Computational Molecular Sciences. • “State of the art and practice” • Intellectual drivers • Conceptualization Phase: Identifying the community and needs • Bio-molecular Simulations (BMS) Conceptualization • Quantum Mechanics/Chemistry (QM) Conceptualization • Execution Phase. • Structure and Governance Model • Resource Distribution • Work Plan 2 The Molecular Sciences Software Institute (MolSSI) • New project (as of August 1st, 2016) funded by the National Science Foundation. • Collaborative effort by Virginia Tech, Rice U., Stony Brook U., U.C. Berkeley, Stanford U., Rutgers U., U. Southern California, and Iowa State U. • Total budget of $19.42M for five years, potentially renewable to ten years. • Joint support from numerous NSF divisions: Advanced Cyberinfrastructure (ACI), Chemistry (CHE), Division of Materials Research (DMR), Office of Multidisciplinary Activities (OMA) • Designed to serve and enhance the software development efforts of the broad field of computational molecular science. 3 Computational Molecular Sciences (CMS) • The history of CMS – the sub-fields of quantum chemistry, computational materials science, and biomolecular simulation – reaches back decades to the genesis of computational science. • CMS is now a “full partner with experiment”. • For an impressive array of chemical, biochemical, and materials challenges, our community has developed simulations and models that directly impact: • Development of new chiral drugs; • Elucidation of the functionalities of biological macromolecules; • Development of more advanced materials for solar-energy storage, technology for CO2 sequestration, etc.
    [Show full text]
  • Neural Networks Based Variationally Enhanced Sampling
    NEURAL NETWORKS BASED VARIATIONALLY ENHANCED SAMPLING A PREPRINT Luigi Bonati Department of Physics, ETH Zurich, 8092 Zurich, Switzerland and Institute of Computational Sciences, Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland Yue-Yu Zhang Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland and Institute of Computational Sciences, Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland Michele Parrinello Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland, Institute of Computational Sciences, Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland, and Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy September 25, 2019 ABSTRACT Sampling complex free energy surfaces is one of the main challenges of modern atomistic simulation methods. The presence of kinetic bottlenecks in such surfaces often renders a direct approach useless. A popular strategy is to identify a small number of key collective variables and to introduce a bias potential that is able to favor their fluctuations in order to accelerate sampling. Here we propose to use machine learning techniques in conjunction with the recent variationally enhanced sampling method [Valsson and Parrinello, Phys. Rev. Lett. 2014] in order to determine such potential. This is achieved by expressing the bias as a neural network. The parameters are determined in a variational learning scheme aimed at minimizing an appropriate functional. This required the development of a new and more efficient minimization technique. The expressivity of neural networks allows representing rapidly varying free energy surfaces, removes boundary effects artifacts and allows several collective variables to be handled.
    [Show full text]
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • Structural Ensembles of Intrinsically Disordered Proteins Depend Strongly on Force Field: a Comparison to Experiment Sarah Rauscher,*,† Vytautas Gapsys,† Michal J
    Article pubs.acs.org/JCTC Structural Ensembles of Intrinsically Disordered Proteins Depend Strongly on Force Field: A Comparison to Experiment Sarah Rauscher,*,† Vytautas Gapsys,† Michal J. Gajda,‡ Markus Zweckstetter,‡,§,∥ Bert L. de Groot,† and Helmut Grubmüller† † Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany ‡ Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany § German Center for Neurodegenerative Diseases (DZNE), Göttingen 37077, Germany ∥ Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center, Göttingen 37073, Germany *S Supporting Information ABSTRACT: Intrinsically disordered proteins (IDPs) are notoriously challenging to study both experimentally and computationally. The structure of IDPs cannot be described by a single conformation but must instead be described as an ensemble of interconverting conformations. Atomistic simu- lations are increasingly used to obtain such IDP conformational ensembles. Here, we have compared the IDP ensembles generated by eight all-atom empirical force fields against primary small-angle X-ray scattering (SAXS) and NMR data. Ensembles obtained with different force fields exhibit marked differences in chain dimensions, hydrogen bonding, and secondary structure content. These differences are unexpect- edly large: changing the force field is found to have a stronger effect on secondary structure content than changing the entire peptide sequence. The CHARMM 22* ensemble performs best in this force field comparison: it has the lowest error in chemical shifts and J-couplings and agrees well with the SAXS data. A high population of left-handed α-helix is present in the CHARMM 36 ensemble, which is inconsistent with measured scalar couplings.
    [Show full text]
  • A Command-Line Interface for Analysis of Molecular Dynamics Simulations
    taurenmd: A command-line interface for analysis of Molecular Dynamics simulations. João M.C. Teixeira1, 2 1 Previous, Biomolecular NMR Laboratory, Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain 2 DOI: 10.21105/joss.02175 Current, Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Software Canada • Review Summary • Repository • Archive Molecular dynamics (MD) simulations of biological molecules have evolved drastically since its application was first demonstrated four decades ago (McCammon, Gelin, & Karplus, 1977) and, nowadays, simulation of systems comprising millions of atoms is possible due to the latest Editor: Richard Gowers advances in computation and data storage capacity – and the scientific community’s interest Reviewers: is growing (Hospital, Battistini, Soliva, Gelpí, & Orozco, 2019). Academic groups develop most of the MD methods and software for MD data handling and analysis. The MD analysis • @amritagos libraries developed solely for the latter scope nicely address the needs of manipulating raw data • @luthaf and calculating structural parameters, such as: MDAnalysis (Gowers et al., 2016; Michaud- Agrawal, Denning, Woolf, & Beckstein, 2011); (McGibbon et al., 2015); (Romo, Submitted: 03 March 2020 MDTraj LOOS Published: 02 June 2020 Leioatts, & Grossfield, 2014); and PyTraj (Hai Nguyen, 2016; Roe & Cheatham, 2013), each with its advantages and drawbacks inherent to their implementation strategies. This diversity License enriches the field with a panoply of strategies that the community can utilize. Authors of papers retain copyright and release the work The MD analysis software libraries widely distributed and adopted by the community share under a Creative Commons two main characteristics: 1) they are written in pure Python (Rossum, 1995), or provide a Attribution 4.0 International Python interface; and 2) they are libraries: highly versatile and powerful pieces of software that, License (CC BY 4.0).
    [Show full text]
  • Molecular Dynamics Free Energy Simulations Reveal the Mechanism for the Antiviral Resistance of the M66I HIV-1 Capsid Mutation
    viruses Article Molecular Dynamics Free Energy Simulations Reveal the Mechanism for the Antiviral Resistance of the M66I HIV-1 Capsid Mutation Qinfang Sun 1 , Ronald M. Levy 1,*, Karen A. Kirby 2,3 , Zhengqiang Wang 4 , Stefan G. Sarafianos 2,3 and Nanjie Deng 5,* 1 Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; [email protected] 2 Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; [email protected] (K.A.K.); stefanos.sarafi[email protected] (S.G.S.) 3 Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA 4 Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] 5 Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA * Correspondence: [email protected] (R.M.L.); [email protected] (N.D.) Abstract: While drug resistance mutations can often be attributed to the loss of direct or solvent- mediated protein−ligand interactions in the drug-mutant complex, in this study we show that a resistance mutation for the picomolar HIV-1 capsid (CA)-targeting antiviral (GS-6207) is mainly due to the free energy cost of the drug-induced protein side chain reorganization in the mutant protein. Among several mutations, M66I causes the most suppression of the GS-6207 antiviral activity Citation: Sun, Q.; Levy, R.M.; Kirby, (up to ~84,000-fold), and only 83- and 68-fold reductions for PF74 and ZW-1261, respectively. To K.A.; Wang, Z.; Sarafianos, S.G.; understand the molecular basis of this drug resistance, we conducted molecular dynamics free energy Deng, N.
    [Show full text]
  • Multiscale Simulations of Intrinsically Disordered Proteins
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses July 2019 Multiscale Simulations of Intrinsically Disordered Proteins Xiaorong Liu University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Biophysics Commons, Physical Chemistry Commons, and the Structural Biology Commons Recommended Citation Liu, Xiaorong, "Multiscale Simulations of Intrinsically Disordered Proteins" (2019). Doctoral Dissertations. 1565. https://doi.org/10.7275/14020756 https://scholarworks.umass.edu/dissertations_2/1565 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Multiscale Simulations of Intrinsically Disordered Proteins A Dissertation Presented by XIAORONG LIU Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2019 Chemistry © Copyright by Xiaorong Liu 2019 All Rights Reserved Multiscale Simulations of Intrinsically Disordered Proteins A Dissertation Presented by XIAORONG LIU Approved as to style and content by: ____________________________________ Jianhan Chen, Chair ____________________________________ Scott Auerbach, Member ____________________________________ Craig Martin, Member ____________________________________ Li-Jun Ma, Member __________________________________ Richard Vachet, Department Head Department of Chemistry DEDICATION To my parents, husband, advisor and other educators who light the way forward for me. ACKNOWLEDGMENTS First and foremost, I would like to express my wholehearted gratitude to my research advisor Dr. Jianhan Chen. Dr. Chen is a great scientist, who is extremely knowledgeable, wise and passionate about science.
    [Show full text]
  • EPSRC Service Level Agreement with STFC for Computational Science Support
    CoSeC Computational Science Centre for Research Communities EPSRC Service Level Agreement with STFC for Computational Science Support FY 2016/17 Report and Update on FY 2017/18 Work Plans This document contains the 2016/17 plans, 2016/17 summary reports, and 2017/18 plans for the programme in support of CCP and HEC communities delivered by STFC and funded by EPSRC through a Service Level Agreement. Notes in blue are in-year updates on progress to the tasks included in the 2016/17 plans. Text highlighted in yellow shows changes to the draft 2017/18 plans that we submitted in January 2017. Contents CCP5 – Computer Simulation of Condensed Phases .......................................................................... 4 CCP5 – 2016 / 17 Plans (1 April 2016 – 31 March 2017) ...................................................... 4 CCP5 – Summary Report (1 April 2016 – 31 March 2017) .................................................... 7 CCP5 –2017 / 18 Plans (1 April 2017 – 31 March 2018) ....................................................... 8 CCP9 – Electronic Structure of Solids .................................................................................................. 9 CCP9 – 2016 / 17 Plans (1 April 2016 – 31 March 2017) ...................................................... 9 CCP9 – Summary Report (1 April 2016 – 31 March 2017) .................................................. 11 CCP9 – 2017 / 18 Plans (1 April 2017 – 31 March 2018) .................................................... 12 CCP-mag – Computational Multiscale
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape. Permalink https://escholarship.org/uc/item/4sm897jh Journal Chemical reviews, 121(8) ISSN 0009-2665 Authors Kowalski, Karol Bair, Raymond Bauman, Nicholas P et al. Publication Date 2021-04-01 DOI 10.1021/acs.chemrev.0c00998 Peer reviewed eScholarship.org Powered by the California Digital Library University of California From NWChem to NWChemEx: Evolving with the computational chemistry landscape Karol Kowalski,y Raymond Bair,z Nicholas P. Bauman,y Jeffery S. Boschen,{ Eric J. Bylaska,y Jeff Daily,y Wibe A. de Jong,x Thom Dunning, Jr,y Niranjan Govind,y Robert J. Harrison,k Murat Keçeli,z Kristopher Keipert,? Sriram Krishnamoorthy,y Suraj Kumar,y Erdal Mutlu,y Bruce Palmer,y Ajay Panyala,y Bo Peng,y Ryan M. Richard,{ T. P. Straatsma,# Peter Sushko,y Edward F. Valeev,@ Marat Valiev,y Hubertus J. J. van Dam,4 Jonathan M. Waldrop,{ David B. Williams-Young,x Chao Yang,x Marcin Zalewski,y and Theresa L. Windus*,r yPacific Northwest National Laboratory, Richland, WA 99352 zArgonne National Laboratory, Lemont, IL 60439 {Ames Laboratory, Ames, IA 50011 xLawrence Berkeley National Laboratory, Berkeley, 94720 kInstitute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794 ?NVIDIA Inc, previously Argonne National Laboratory, Lemont, IL 60439 #National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373 @Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 4Brookhaven National Laboratory, Upton, NY 11973 rDepartment of Chemistry, Iowa State University and Ames Laboratory, Ames, IA 50011 E-mail: [email protected] 1 Abstract Since the advent of the first computers, chemists have been at the forefront of using computers to understand and solve complex chemical problems.
    [Show full text]
  • Measure to Fund Upgrades
    In Sports... In Forum... Spartans upset On the bus in 10th-ranked SPARTAN San Jose: 49ers, win two of sights, sounds three games in and smells. weekend series. FORUM & OPINION See story on page 4. See column on page 2. 1'111,11,11yd for AIStith' tucr 1414 Volume 102, Number 49 Monday. April 18, 1994 Measure to fund upgrades New building By Laurel Anderson The money will be divided almost oumi, associate executive vice presi- The $901; ntillion to fund the pro- in the works siranan Daily Staff Writer equally among the three systems. dent of facilities development and jects comes In the state's selling of genti.t1 /bligation bonds to investors By Laurel Anderson A bond measure to fund Califor- The CSU's project list covers an operations. Sintruui Day St41 Writer nia college campus improvements estimated 80 projects at all 20 Bentley-Adler said, "In who earn interest on the money they will be on the June 1994 ballot. The campuses. 1990 when Proposition 143 loan to the state. The total cost to the A plan to construct and renovate campus projects include modernization and "The bond measure is the ALIFORNIA failed, that set us back a cou- state is $1.6 billion, because an addi- facilities will proceed if SJSU receives funding remodeling of facilities, updating only way to remodel and ple years in building and tional $700 million will be paid in from a $900 million bond measure. safety standards and replacing aging repair some of our facilities," TATE remodeling projects, so if interest.
    [Show full text]
  • PLUMED User's Guide
    PLUMED User’s Guide A portable plugin for free-energy calculations with molecular dynamics Version 1.3.0 – Nov 2011 Contents 1 Introduction 5 1.1 What is PLUMED?.........................5 1.2 Supported codes . .6 1.3 Features . .7 1.4 New in version 1.3 . .8 1.5 Restrictions . .9 1.6 The PLUMED package . .9 1.7 Online resources . 10 1.8 Credits . 11 1.9 Citing PLUMED ........................... 11 1.10 License . 11 2 Installation 13 2.1 Compiling PLUMED ......................... 13 2.1.1 Compiling the ACEMD plugin with PLUMED ...... 17 2.2 Including reconnaissance metadynamics . 18 2.3 Testing the installation . 19 2.4 Back to the original code . 21 2.5 The Python interface to PLUMED ................. 21 3 Running free-energy simulations 23 3.1 How to activate PLUMED ..................... 23 3.2 The input file . 25 3.3 A note on units . 27 3.4 Metadynamics . 27 3.4.1 Typical output . 27 3.4.2 Bias potential . 28 3.4.3 Well-tempered metadynamics . 29 1 3.4.4 Restarting a metadynamics run . 30 3.4.5 Using GRID ........................ 30 3.4.6 Multiple walkers . 35 3.4.7 Monitoring a collective variable without biasing it . 35 3.4.8 Defining an interval . 36 3.4.9 Inversion condition . 38 3.5 Running in parallel . 40 3.6 Replica exchange methods . 40 3.6.1 Parallel tempering metadynamics . 41 3.6.2 Bias exchange simulations . 42 3.7 Umbrella sampling . 45 3.8 Steered MD . 46 3.8.1 Steerplan . 46 3.9 Adiabatic Bias MD .
    [Show full text]
  • Arxiv:1902.03336V2 [Stat.ML] 2 Jun 2019 the Simplest Molecular Systems
    Nonlinear Discovery of Slow Molecular Modes using State-Free Reversible VAMPnets Wei Chen,1 Hythem Sidky,2 and Andrew L. Ferguson2, ∗ 1Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 2Institute for Molecular Engineering, 5640 South Ellis Avenue, University of Chicago, Chicago, Illinois 60637 The success of enhanced sampling molecular simulations that accelerate along collective variables (CVs) is predicated on the availability of variables coincident with the slow collective motions governing the long-time conformational dynamics of a system. It is challenging to intuit these slow CVs for all but the simplest molecular systems, and their data-driven discovery directly from molecular simulation trajectories has been a central focus of the molecular simulation community to both unveil the important physical mechanisms and to drive enhanced sampling. In this work, we introduce state-free reversible VAMPnets (SRV) as a deep learning architecture that learns nonlinear CV approximants to the leading slow eigenfunctions of the spectral decomposition of the transfer operator that evolves equilibrium-scaled probability distributions through time. Orthogonality of the learned CVs is naturally imposed within network training without added regularization. The CVs are inherently explicit and differentiable functions of the input coordinates making them well- suited to use in enhanced sampling calculations. We demonstrate the utility of SRVs in capturing parsimonious nonlinear representations of complex system dynamics in applications to 1D and 2D toy systems where the true eigenfunctions are exactly calculable and to molecular dynamics simulations of alanine dipeptide and the WW domain protein. I. INTRODUCTION a dataset of size N, which becomes intractable for large datasets.
    [Show full text]