ALGEBRA II: RINGS AND MODULES. LECTURE NOTES, HILARY 2016. KEVIN MCGERTY. 1. INTRODUCTION. These notes accompany the lecture course ”Algebra II: Rings and modules” as lectured in Hilary term of 2016. They are an edited version of the notes which were put online in four sections during the lectures, compiled into a single file. A number of non-examinable notes were also posted during the course, and these are included in the current document as appendices. If you find any errors, typographical or otherwise, please report them to me at
[email protected]. I will also post a note summarizing the main results of the course next term. CONTENTS 1. Introduction. 1 2. Rings: Definition and examples. 2 2.1. Polynomial Rings. 6 3. Basic properties. 7 3.1. The field of fractions. 8 4. Ideals and Quotients. 10 4.1. The quotient construction. 13 4.2. Images and preimages of ideals. 17 5. Prime and maximal ideals, Euclidean domains and PIDs. 18 6. An introduction to fields. 23 7. Unique factorisation. 27 7.1. Irreducible polynomials. 34 8. Modules: Definition and examples. 36 8.1. Submodules, generation and linear independence. 38 9. Quotient modules and the isomorphism theorems. 39 10. Free, torsion and torsion-free modules. 42 10.1. Homorphisms between free modules. 45 11. Canonical forms for matrices over a Euclidean Domain. 48 12. Presentations and the canonical form for modules. 52 13. Application to rational and Jordan canonical forms. 56 13.1. Remark on computing rational canonical form. 59 Date: March, 2016. 1 2 KEVIN MCGERTY.