The Genus Amphiroa (Lithophylloideae, Corallinaceae, Rhodophyta) from the Temperate Coasts of the Australian Continent, Including the Newly Described A

Total Page:16

File Type:pdf, Size:1020Kb

The Genus Amphiroa (Lithophylloideae, Corallinaceae, Rhodophyta) from the Temperate Coasts of the Australian Continent, Including the Newly Described A Phycologia (2009) Volume 48 (4), 258–290 Published 6 July 2009 The genus Amphiroa (Lithophylloideae, Corallinaceae, Rhodophyta) from the temperate coasts of the Australian continent, including the newly described A. klochkovana 1 1 2 ADELE S. HARVEY *, WILLIAM J. WOELKERLING AND ALAN J.K. MILLAR 1Department of Botany, La Trobe University, Bundoora, Vic. 3083, Australia 2Royal Botanic Gardens, Mrs Macquaries Road, Sydney, NSW 2000, Australia HARVEY A.S., WOELKERLING W.J. AND MILLAR A.J.K. 2009. The genus Amphiroa (Lithophylloideae, Corallinaceae, Rhodophyta) from the temperate coasts of the Australian continent, including the newly described A. klochkovana. Phycologia 48: 258–290. DOI: 10.2216/08-84.1 Studies of Amphiroa (Lithophylloideae, Corallinaceae, Rhodophyta) from the temperate coasts of Australia provide new evidence that differences in tetrasporangial conceptacle pore canal anatomy are diagnostically significant in delimiting species within the genus. Differences in overall morphology and genicular anatomy are also reliable for delimiting species. These data are supported by examination of relevant type specimens. Four species occur in temperate Australian waters. Three (Amphiroa anceps, Amphira beauvoisii, and the newly described Amphiroa klochkovana) occur in southeastern Australia, and three (A. anceps, A. beauvoisii,andAmphiroa gracilis) occur in southern and southwestern Australia. Comparisons of A. beauvoisii and A. anceps have shown that they cannot be separated at species level morphologically but clearly differ in tetrasporangial conceptacle pore canal anatomy. This has important flow-on implications concerning specimen identification, reported geogeographic distribution and putative heterotypic synonymy of the two species. Relevant historical data, a species key and a synoptic description of Amphiroa also are included. INTRODUCTION Gabo Island, Victoria roughly comprises the Peronian province (Womersley 1990, Millar 2007). Lord Howe Island Amphiroa, one of six currently recognized genera in the (see Millar & Kraft 1993) and Norfolk Island (see Millar Corallinaceae, subfamily Lithophylloideae, is widespread in 1999), although politically part of New South Wales, were not tropical and warm temperate waters, also occurs in cool included because they are 600 and 1400 km respectively from temperate waters, and is known from the fossil record. the Australian mainland and show only partial biogeographic Woelkerling et al. (2002, p. 370, table 2; p. 372, table 3) links to the Peronian province (Millar 2007). The southern summarized the diagnostic characters of and provided a coast of Australia, including Tasmania, constitutes the dichotomous key to the six known genera of Lithophylloi- Flindersianprovince,whichissaidtodiffusenorthward deae with living species [Amphiroa, Ezo, Lithophyllum along the west coast to somewhere between Cape Leeuwin (including Titanoderma), Lithothrix, Paulsilvella and Te- and Geraldton (Huisman 2007; Millar 2007). Following narea]. Womersley (1984, p. 13), warmer-water species that occur This account contains a new taxonomic treatment of along the southwestern coast of Australia but are not also species of Amphiroa (Corallinaceae, Corallinales, Rhodo- definitely known from the south coast are not dealt with. phyta) confirmed to occur in temperate Australia and In addition to the species accounts and new data on provides new evidence that differences in tetrasporangial relevant types, the taxonomic implications of the results are conceptacle pore canal anatomy are diagnostically signif- considered in relation to the diagnostic value at species level icant in separating species within the genus. Our study of of differences in tetrasporangial conceptacle pore canal new and historical collections, including types, has led to anatomy and differences in genicular anatomy, and in the conclusion that four species occur in temperate relation to species biogeography. Relevant historical data, a Australian waters. Three (Amphiroa anceps, Amphiroa species key, and a synoptic description of Amphiroa also are beauvoisii, and the newly described Amphiroa klochkovana) included. occur in southeastern Australia and three (A. anceps, A. beauvoisii, and Amphiroa gracilis) occur in southern and southwestern Australia. We also have concluded that the MATERIAL AND METHODS status of 21 taxa previously considered synonyms of A. anceps or A. beauvoisii requires reassessment. Data are based on type material, newly collected material In the context of this study, temperate Australia encom- and herbarium collections from Universite´ de Caen, Caen, passes two biogeographic provinces. The southeastern coastal France (CN), Laboratoire de Cryptogamie, Muse´um area from the Queensland–New South Wales border south to national d’Histoire naturelle, Paris, France (PC), Depart- ment of Botany, La Trobe University, Victoria, Australia * Corresponding author ([email protected]). (LTB), National Herbarium of Victoria, Royal Botanic 258 Harvey et al.: Amphiroa from temperate Australia 259 Gardens, South Yarra, Victoria, Australia (MEL) and endophytic base or lacking a recognizable base or with National Herbarium of New South Wales, Royal Botanic multiple attachment points apparently formed secondarily Gardens, Sydney, New South Wales, Australia (NSW). and erect to recumbent axes composed of calcified segments Specimens originally in LTB and transferred to MEL have (intergenicula) and secondarily decalcified segments (genic- both LTB and MEL numbers cited. Herbarium abbrevia- ula); branching of axes variously dichotomous, alternate tions follow the Index Herbariorum, formerly in print pinnate, irregular, trichotomous or clustered, with mixtures (Holmgren et al. 1990), now online electronically (Holm- and with adventitious branches occurring in some species; gren and Holmgren 1998). The International Code of branch segments flattened to compressed to cylindrical. Botanical Nomenclature (ICBN) cited is the Vienna edition Thallus construction in upright axes monomerous, (McNeill et al. 2006). consisting of a single system of branched, laterally coherent Field procedures, species identification and microtech- filaments organized into alternating intergenicula and nique are detailed in Harvey et al. (2006). Morphological genicula. and anatomical terminology follows Woelkerling (1988). Intergenicula (as seen in median longitudinal section) Synoptic descriptions contain information on all diagnostic composed of a central core (medullary) region in which characters and other significant features, including those thin-walled, calcified, elongate cells of adjacent filaments useful for specimen identification. become more or less aligned to form longer tiers of arching cells interspersed by shorter tiers, and a peripheral (cortical) region where distal portions of calcified core filaments or their derivatives bend outward and terminate at the thallus HISTORICAL BACKGROUND surface in epithallial cells with rounded or flattened outer walls; branch apices usually composed only of core Published records of species Amphiroa from temperate filaments that terminate in meristematic initials. Cells of Australia begin with Lamarck (1815: 238), who described adjacent intergenicular filaments linked by secondary pit A. anceps as a species of Corallina on the basis of specimens connections; cell fusions absent. from ‘…les mers Australes ou de la Nouvelle-Hollande’ Genicula arising secondarily behind branch apices; collected by F. Peron & C.A. Lesueur during the French composed (as seen in median longitudinal section) of one expedition of 1800–1804 under the command of T.N. or usually more arching tiers of transformed, thick-walled, Baudin. (Ducker 1979b). decalcified core-region cells, and in some species also Since then, at least six additional species [A. beauvoisii consisting of associated decalcified peripheral-region cells. Lamouroux, Amphiroa dilatata Lamouroux; Amphiroa Transition from decalcified genicula to calcified interge- ephedraea (Lamarck) Decaisne; Amphiroa galaxauroides nicula occurring within single tiers of cells or between Sonder; A. gracilis W.H. Harvey; Amphiroa nobilis Ku¨tzing] adjacent tiers of cells. have been reported from the region; published records are Life history, where known, triphasic with haploid summarized by Womersley & Johansen (1996) for southern gametangial plants, diploid carposporophytes and diploid and southwestern Australia and by Millar & Kraft (1993) tetrasporangial plants. Bisporangial plants of unknown for southeastern Australia. ploidy level also found in some species. Gametangial plants, In conjunction with a detailed study of species of tetrasporangial plants and bisporangial plants all isomor- Amphiroa collected during the Siboga Expedition (see phic; carposporophytes developing within old female Weber 1902 for details), Weber-van Bosse (1904, p. 93) conceptacles after presumed karyogamy. concluded that A. dilatata, A. galaxauroides, and A. nobilis Male and female gametangia, tetrasporangia and bispor- were conspecific with A. anceps, and that a W.H. Harvey angia formed in separate uniporate conceptacles; male and specimen of A. ephedraea from New South Wales (explicit female conceptacles occurring on the same, or in most locality not indicated) numbered 458 was a misidentified species, on different plants. All mature conceptacles specimen of A. anceps. situated on the surfaces of intergenicula, formed laterally More recently, Womersley & Johansen (1996) concluded in peripheral (cortical)
Recommended publications
  • Articulated Coralline Algae of the Gulf of California, Mexico, I: Amphiroa Lamouroux
    SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES • NUMBER 9 Articulated Coralline Algae of the Gulf of California, Mexico, I: Amphiroa Lamouroux James N. Norris and H. William Johansen SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Norris, James N., and H. William Johansen. Articulated Coralline Algae of the Gulf of California, Mexico, I: Amphiroa Lamouroux. Smithsonian Contributions to the Marine Sciences, number 9, 29 pages, 18 figures, 1981.—Amphiroa (Coral- linaceae, Rhodophyta) is a tropical and subtropical genus of articulated coralline algae and is prominent in shallow waters of the Gulf of California, Mexico. Taxonomic and distributional investigations of Amphiroa from the Gulf have revealed the presence of seven species: A. beauvoisn Lamouroux, A. brevianceps Dawson, A. magdalensis Dawson, A. misakiensis Yendo, A. ngida Lamouroux, A. valomoides Yendo, and A. van-bosseae Lemoine. Only two of these species names are among the 16 taxa of Amphiroa previously reported from this body of water; all other names are now considered synonyms. Of the seven species in the Gulf of California, A. beauvoisii, A. misakiensis, A. valomoides and A. van-bosseae are common, while A. brevianceps, A. magdalensis, and A. ngida are rare and poorly known. None of these species is endemic to the Gulf, and four of them, A. beauvoisii, A. misakiensis, A. valomoides, and A. ngida, also occur in Japan. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year. SERIES COVER DESIGN: Seascape along the Atlantic coast of eastern North America. Library of Congress Cataloging in Publication Data Norris, James N.
    [Show full text]
  • Amphiroa Fragilissima (Linnaeus) Lamouroux (Corallinales, Rhodophyta) from Myanmar
    Journal of Aquaculture & Marine Biology Research Article Open Access Morphotaxonomy, culture studies and phytogeographical distribution of Amphiroa fragilissima (Linnaeus) Lamouroux (Corallinales, Rhodophyta) from Myanmar Abstract Volume 7 Issue 3 - 2018 Articulated coralline algae belonging to the genus Amphiroa collected from the coastal zones of Myanmar were identified as A. fragilissima based on the characters such as shape Mya Kyawt Wai of intergenicula, branching type, type of genicula (number of tiers formed at the genicula), Department of Marine Science, Mawlamyine University, shape (composition and arrangement of short and long tiers of medullary cells), presence Myanmar or absence of secondary pit-connections and lateral fusions at medullary filaments of the intergenicula and position of conceptacles. A comparison on the taxonomic characters of A. Correspondence: Mya Kyawt Wai, Lecturer, Department of fragilissima growing in Myanmar and in different countries was discussed. A. fragilissima Marine Science, Mawlamyine University, Myanmar, showed Amphiroa-type which was characterized by transversely divided cells in the first Email [email protected] division of the early stages of spore germination in laboratory culture. Moreover, the Received: May 31, 2018 | Published: June 12, 2018 distribution ranges of A. fragilissima along both the coastal zones of Myanmar and the world oceans were presented. In addition, ecological records of this species were briefly reported. Keywords: A. fragilissima, articulated coralline algae, corallinaceae, corallinales, germination patterns, laboratory culture, morphotaxonomy, Myanmar, phytogeographical distribution, Rhodophyta Introduction Lamouroux and A. anceps (Lamarck) Decaisne, along the 3 coastal zones of Myanmar. Mya Kyawt Wai12 also described five species of The coralline algae are assigned to the family Corallinaceae Amphiroa from Myanmar namely, A.
    [Show full text]
  • Taxonomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1997 Taxonomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta) Bethany Ann Griffin College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Systems Biology Commons Recommended Citation Griffin, Bethany Ann, ax"T onomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta)" (1997). Dissertations, Theses, and Masters Projects. Paper 1539626098. https://dx.doi.org/doi:10.21220/s2-pnjz-de41 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. TAXONOMIC IMPLICATIONS OF SPORANGIAL ULTRASTRUCTURE WITHIN THE SUBFAMILY MELOBESIOIDEAE (CORALLINALES, RHODOPHYTA) A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts By Bethany Ann Griffin 1997 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Bethany Ann Griffin Approved, April 1997 Sharon T. Broadwater A ^ Scott I\$artha A. Case DEDICATION To Jon, for giving new meaning to
    [Show full text]
  • Rhodolith Forming Coralline Algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a Critical Evaluation
    Phytotaxa 190 (1): 370–382 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.190.1.22 Rhodolith forming coralline algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a critical evaluation ANA CRISTINA REBELO1,2,3,4*, MICHAEL W. RASSER4, RAFAEL RIOSMENA-RODRÍGUEZ5, ANA ISABEL NETO1,6,7 & SÉRGIO P. ÁVILA1,2,3,8 1 Departamento de Biologia, Universidade dos Açores, Campus de Ponta Delgada, Apartado 1422-801 Ponta Delgada, Açores, Portugal 2 CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores - Departamento de Biologia da Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal 3 MPB - Marine Palaeobiogeography Working group, University of Azores, Portugal 4 SMNS - Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany 5 Programa de Investigación en Botánica Marina, Departamento de Biologia Marina, Universidad Autónoma de Baja California Sur, Km 5.5 Carretera al Sur, Col. Mezquitito, La Paz BCS 23080 México 6 Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal 7 CIRN - University of the Azores, Portugal 8 Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal * Corresponding author, email: [email protected] ABSTRACT The Late Miocene Malbusca outcrop is located in the southeastern coast of Santa Maria Island (Azores, NE Atlantic), interspersed in volcanic formations. At ~20 meters above present sea level, a prominent discontinuous layer of rhodoliths seizes with an extension of ~250 meters.
    [Show full text]
  • Light As a Limiting Factor for Epilithic Algae in the Supralittoral Zone of Littoral Caves
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector MINI REVIEW published: 19 February 2016 doi: 10.3389/fmars.2016.00018 Light as a Limiting Factor for Epilithic Algae in the Supralittoral Zone of Littoral Caves Danielle Mayer *, Zvy Dubinsky and David Iluz The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel In a littoral cave system, abiotic environmental properties, such as the intensity and spectral distribution of light, often change going from the exterior to the interior part of the cave, filtering the light and thus creating a deep-sea irradiance setting for marine flora. In this mini-review, we suggest that the supralittoral zone in littoral caves might provide a sanctuary for mesophotic calcifying algae. These abiotic conditions offered an opportunity for normally deep-water mesophotic species to expand their range due to their competitive advantage over shallow, open-water species. Supralittoral calcifying algae are significant for marine biodiversity but are likely to be damaged in the future by ocean acidification. We have summarized important abiotic factors regarding algae settlement and succession processes in the supralittoral zone of littoral caves, including Edited by: their photosynthetic pigments and habitat requirements. We describe their zonation Alberto Basset, University of Salento, Italy according to irradiance, and review previous research on epilithic algal assemblages in Reviewed by: littoral caves. Although we found a great deal of information on the algae of sea caves and Rafael Riosmena-Rodriguez, littoral caves, no such information was published on the algae of the supralittoral zone Universidad Autónoma de Baja of these caves.
    [Show full text]
  • Sequencing Type Material Resolves the Identity and Distribution of the Generitype Lithophyllum Incrustans, and Related European Species L
    J. Phycol. 51, 791–807 (2015) © 2015 Phycological Society of America DOI: 10.1111/jpy.12319 SEQUENCING TYPE MATERIAL RESOLVES THE IDENTITY AND DISTRIBUTION OF THE GENERITYPE LITHOPHYLLUM INCRUSTANS, AND RELATED EUROPEAN SPECIES L. HIBERNICUM AND L. BATHYPORUM (CORALLINALES, RHODOPHYTA)1 Jazmin J. Hernandez-Kantun2 Botany Department, National Museum of Natural History, Smithsonian Institution, MRC 166 PO Box 37012, Washington District of Columbia, USA Irish Seaweed Research Group, Ryan Institute, National University of Ireland, University Road, Galway Ireland Fabio Rindi Dipartimento di Scienze della Vita e dell’Ambiente, Universita Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy Walter H. Adey Botany Department, National Museum of Natural History, Smithsonian Institution, MRC 166 PO Box 37012, Washington District of Columbia, USA Svenja Heesch Irish Seaweed Research Group, Ryan Institute, National University of Ireland, University Road, Galway Ireland Viviana Pena~ BIOCOST Research Group, Departamento de Bioloxıa Animal, Bioloxıa Vexetal e Ecoloxıa, Facultade de Ciencias, Universidade da Coruna,~ Campus de A Coruna,~ A Coruna~ 15071, Spain Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, Paris 75005, France Phycology Research Group, Ghent University, Krijgslaan 281, Building S8, Ghent 9000, Belgium Line Le Gall Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, Paris 75005, France and Paul W. Gabrielson Department of Biology and Herbarium, University of North Carolina, Chapel Hill, Coker Hall CB 3280, Chapel Hill, North Carolina 27599-3280, USA DNA sequences from type material in the belonging in Lithophyllum.
    [Show full text]
  • An Account of Common Crustose Coralline Algae
    D.I. Walker and F.E. Wells (Eds) 1999. The Seagrass Flora and Fauna of Rottnest Island, Western Australia. Western Australian Museum, Perth. CORE An account of common crustose coralline algae Metadata, citation and similar papers at core.ac.uk Provided(Corallinales, by Research Repository Rhodophyta) from macrophyte communities at Rottnest Island, Western Australia. by C.B. Sim Department of Botany, University of Western Australia, Nedlands, 6907, Western Australia and "' R.A. Townsend School of Biological Sciences and Biotechnology, Division of Science and Engineering, Murdoch University, Murdoch 6150, Western Australia ABSTRACT Meaningful interpretation of ecological experimentation can only be made after knowledge of the floral composition of an area is known. Crustose coralline algae have a reputation among phycologists as being a difficult group of organisms to identify to species level. Crustose coralline algae (Corallinales, Rhodophyta) cover the substratum in most macrophyte communities; their ecology is poorly understood. The aim of this work was to develop a species list and generic key for crustose coralline algae found in macrophyte communities around Rottnest Island, Western Australia. Eleven species belonging to seven genera were identified from limestone substrata in kelp and mixed macroalgal communities. A key to the common genera of crustose coralline algae found in these communities is also provided. The key, aimed at ecologists with limited knowledge of coralline taxonomy and anatomy, uses gross external and easily recognisable internal characters. The crustose coralline algal flora of Rottnest Island is a mixture of Indo-West Pacific and southern temperate species. Species such as Hydrolithon onkodes which has an extensive tropical and subtropical range were found at most sites sampled.
    [Show full text]
  • The Crustose Coralline Al^Ae (Rhodophyta: Corallinaceae) of the Hawaiian Islands
    The Crustose Coralline Al^ae (Rhodophyta: Corallinaceae) of the Hawaiian Islands MAi|i-^i]^MkWi[ikii:ii:iiii[i]^Kiii THE MARINE SCIENCES NUMBER 15 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropo/ogy Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Seaweed and Seagrasses Inventory of Laguna De San Ignacio, BCS
    UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR ÁREA DE CONOCIMIENTO DE CIENCIAS DEL MAR DEPARTAMENTO ACADÉMICO DE BIOLOGÍA MARINA PROGRAMA DE INVESTIGACIÓN EN BOTÁNICA MARINA Seaweed and seagrasses inventory of Laguna de San Ignacio, BCS. Dr. Rafael Riosmena-Rodríguez y Dr. Juan Manuel López Vivas Programa de Investigación en Botánica Marina, Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, Apartado postal 19-B, km. 5.5 carretera al Sur, La Paz B.C.S. 23080 México. Tel. 52-612-1238800 ext. 4140; Fax. 52-612-12800880; Email: [email protected]. Participants: Dr. Jorge Manuel López-Calderón, Dr. Carlos Sánchez Ortiz, Dr. Gerardo González Barba, Dr. Sung Min Boo, Dra. Kyung Min Lee, Hidrobiol. Carmen Mendez Trejo, M. en C. Nestor Manuel Ruíz Robinson, Pas Biol. Mar. Tania Cota. Periodo de reporte: Marzo del 2013 a Junio del 2014. Abstract: The present report presents the surveys of marine flora 2013 – 2014 in the San Ignacio Lagoon of the, representing the 50% of planned visits and in where we were able to identifying 19 species of macroalgae to the area plus 2 Seagrass traditionally cited. The analysis of the number of species / distribution of macroalgae and seagrass is in progress using an intense review of literature who will be concluded using the last field trip information in May-June 2014. During the last two years we have not been able to find large abundances of species of microalgae as were described since 2006 and the floristic lists developed in the 90's. This added with the presence to increase both coverage and biomass of invasive species which makes a real threat to consider.
    [Show full text]
  • Timing of the Evolutionary History of Corallinaceae (Corallinales, Rhodophyta)1
    J. Phycol. 53, 567–576 (2017) © 2017 Phycological Society of America DOI: 10.1111/jpy.12520 TIMING OF THE EVOLUTIONARY HISTORY OF CORALLINACEAE (CORALLINALES, RHODOPHYTA)1 Anja Rosler€ 2 Departamento de Estratigrafıa y Paleontologıa, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain Francisco Perfectti Departamento de Genetica, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain Viviana Pena~ Grupo de investigacion BIOCOST, Facultade de Ciencias, Universidade da Coruna,~ Campus de A Zapateira s/n, 15071 A Coruna,~ Spain Phycology Research Group, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum national d’Histoire naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, F-75005 Paris, France Julio Aguirre and Juan Carlos Braga Departamento de Estratigrafıa y Paleontologıa, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain The temporal dimension of the most recent Abbreviations: mya, million years ago; myr, million Corallinaceae (order Corallinales) phylogeny was years; OTU, operational taxonomic unit presented here, based on first occurrence time estimates from the fossil record. Calibration of the molecular clock of the genetic marker SSU entailed a Coralline red algae (Corallinophycidae, Rhodo- separation of Corallinales from Hapalidiales in the phyta) constitute the major extant group of Albian (Early Cretaceous ~105 mya). Neither calcareous algae and are important components of the calibration nor the fossil record resolved the shallow-water marine hard and sediment bottoms in succession of appearance of the first three emerging areas of low siliciclastic influx from subpolar regions subfamilies: Mastophoroideae, Corallinoideae, and to the Equator (Adey and Mcintyre 1973, Adey Neogoniolithoideae.
    [Show full text]
  • Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2017 Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites Eric Salomaki University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Salomaki, Eric, "Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites" (2017). Open Access Dissertations. Paper 614. https://digitalcommons.uri.edu/oa_diss/614 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ORGANELLAR GENOME EVOLUTION IN RED ALGAL PARASITES: DIFFERENCES IN ADELPHO- AND ALLOPARASITES BY ERIC SALOMAKI A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2017 DOCTOR OF PHILOSOPHY DISSERTATION OF ERIC SALOMAKI APPROVED: Dissertation Committee: Major Professor Christopher E. Lane Jason Kolbe Tatiana Rynearson Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2017 ABSTRACT Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta), and often infect close relatives. This framework enables direct comparisons between autotrophs and parasites to investigate the early stages of parasite evolution.
    [Show full text]
  • Marine Species Distributions: from Data to Predictive Models
    Marine Species Distributions: From data to predictive models Samuel Bosch Promoter: Prof. Dr. Olivier De Clerck Thesis submitted in partial fulfilment of the requirements for the degree of Doctor (PhD) in Science – Biology Academic year 2016-2017 Members of the examination committee Prof. Dr. Olivier De Clerck - Ghent University (Promoter)* Prof. Dr. Tom Moens – Ghent University (Chairman) Prof. Dr. Elie Verleyen – Ghent University (Secretary) Prof. Dr. Frederik Leliaert – Botanic Garden Meise / Ghent University Dr. Tom Webb – University of Sheffield Dr. Lennert Tyberghein - Vlaams Instituut voor de Zee * non-voting members Financial support This thesis was funded by the ERANET INVASIVES project (EU FP7 SEAS-ERA/INVASIVES SD/ER/010) and by VLIZ as part of the Flemish contribution to the LifeWatch ESFRI. Table of contents Chapter 1 General Introduction 7 Chapter 2 Fishing for data and sorting the catch: assessing the 25 data quality, completeness and fitness for use of data in marine biogeographic databases Chapter 3 sdmpredictors: an R package for species distribution 49 modelling predictor datasets Chapter 4 In search of relevant predictors for marine species 61 distribution modelling using the MarineSPEED benchmark dataset Chapter 5 Spatio-temporal patterns of introduced seaweeds in 97 European waters, a critical review Chapter 6 A risk assessment of aquarium trade introductions of 119 seaweed in European waters Chapter 7 Modelling the past, present and future distribution of 147 invasive seaweeds in Europe Chapter 8 General discussion 179 References 193 Summary 225 Samenvatting 229 Acknowledgements 233 Chapter 1 General Introduction 8 | C h a p t e r 1 Species distribution modelling Throughout most of human history knowledge of species diversity and their respective distributions was an essential skill for survival and civilization.
    [Show full text]