Scene Classification Via a Gradient Boosting Random Convolutional

Total Page:16

File Type:pdf, Size:1020Kb

Scene Classification Via a Gradient Boosting Random Convolutional This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Scene Classification via a Gradient Boosting Random Convolutional Network Framework Fan Zhang, Bo Du, Senior Member, IEEE, and Liangpei Zhang, Senior Member, IEEE Abstract—Due to the recent advances in satellite sensors, a large from these VHR images effectively and efficiently has drawn amount of high-resolution remote sensing images is now being great interest in the remote sensing field [1]. However, due to obtained each day. How to automatically recognize and analyze the complex composition and the large number of land-cover scenes from these satellite images effectively and efficiently has become a big challenge in the remote sensing field. Recently, a types, it is still a difficult task. lot of work in scene classification has been proposed, focusing on There have been many attemptsover the yearsto recognize and deep neural networks, which learn hierarchical internal feature analyze scenes from VHR images effectively and efficiently. representations from image data sets and produce state-of-the-art The majority of the early approaches, such as the bag-of-visual- performance. However, most methods, including the traditional words (BoVW) based scene classification method [2], simply shallow methods and deep neural networks, only concentrate on training a single model. Meanwhile, neural network ensembles count the occurrences of the low-level features [e.g., color histo- have proved to be a powerful and practical tool for a number of gram, local binary pattern, and scale-invariant feature transform different predictive tasks. Can we find a way to combine different (SIFT)] in an image and assign a semantic label to the image ac- deep neural networks effectively and efficiently for scene classi- cording to its content. Although the BoVW approach is highly fication? In this paper, we propose a gradient boosting random efficient, a large semantic gap between the low-level features and convolutional network (GBRCN) framework for scene classifica- tion, which can effectively combine many deep neural networks. the high-level semantic meanings still exists, which severely As far as we know, this is the first time that a deep ensemble limits the ability to handle complex image scenes. The tradi- framework has been proposed for scene classification. Moreover, tional BoVW-based methods are mainly based on low-level in the experiments, the proposed method was applied to two features [2]–[5], and low-level features cannot precisely repre- challenging high-resolution data sets: 1) the UC Merced data set sent the semantics of the images because of the so-called seman- containing 21 different aerial scene categories with a submeter resolution and 2) a Sydney data set containing eight land-use tic gap. To bridge this gap, some authors have applied latent categories with a 1.0-m spatial resolution. The proposed GBRCN Dirichlet allocation [6]–[8], a hierarchical probabilistic model, framework outperformed the state-of-the-art methods with the for the unsupervised learning of the topic allocation, based on UC Merced data set, including the traditional single convolutional the visual word distribution. Under these models, each image is network approach. For the Sydney data set, the proposed method represented as a finite mixture of an intermediate set of topics, again obtained the best accuracy, demonstrating that the proposed framework can provide more accurate classification results than which are expected to summarize the scene information [9]. the state-of-the-art methods. These approaches extract the low-level feature representations from the image and build mid-level features to overcome the Index Terms—Convolutional networks (CNets), gradient boost- ing machine (GBM), scene classification. semantic gap, but they still ignore the high-level features and the hierarchical feature representations of the image. Recently, a lot of work in scene classification has been I. INTRODUCTION focused on the learning of hierarchical internal feature repre- ECENT years have witnessed a boom in the numbers of sentations from image data sets [10], [11]. These methods are R different satellite sensors, which now provide us with a called “deep learning” methods. Good internal feature repre- large volume of very high resolution (VHR) remote sensing sentations are hierarchical. In an image, pixels are assembled images. How to automatically recognize and analyze scenes into edgelets, edgelets are assembled into motifs, motifs are assembled into parts, parts are assembled into objects, and fi- nally, objects are assembled into scenes [10]. This suggests that Manuscript received May 28, 2015; revised August 30, 2015; accepted recognizing and analyzing scenes from VHR images should September 30, 2015. This work was supported in part by the National Basic involve multiple trainable feature extraction stages stacked on Research Program of China (973 Program) under Grants 2011CB707105 and top of each other, and we should learn the hierarchical internal 2012CB719905, by the National Natural Science Foundation of China under Grants 61471274 and 41431175, and by the Natural Science Foundation of feature representations from the image. Convolutional networks Hubei Province under Grant 2014CFB193. (CNets) are a popular deep learning method and have recently F. Zhang and L. Zhang are with the State Key Laboratory of Information enjoyed great success in large-scale visual recognition [11]. Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China (e-mail: [email protected]; [email protected]). To train a neural network model, the model weight is a B. Du is with the School of Computer Science, Wuhan University, Wuhan nonconvex optimization problem with many local minima. The 430072, China (e-mail: [email protected]). randomness from different initial points tends to differentiate Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org. the errors of the networks. Ensembles of networks have been Digital Object Identifier 10.1109/TGRS.2015.2488681 proved to be able to alleviate the problem [12]. An earlier 0196-2892 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING overview of different ways of combining neural networks was reported in [13]. We can also consider an ensemble as building a set of “strong” models, which can be further combined to produce a better prediction. The most common ensemble techniques, such as random forests, rely on simple averaging of the models in the ensemble. However, how to combine the clas- sifiers effectively and efficiently is a critical problem. Recently, a boosting framework called gradient boosting machine (GBM) has shown considerable promise in a wide range of practical applications. GBM is a useful practical tool for different pre- dictive tasks, and it can consistently provide more accurate results than the conventional single machine learning models Fig. 1. Typical CNet architecture with two feature extraction stages. [14]. During the last few years, many empirical studies have been published, which use decision trees as the base learners for GBM [15], [16]. All of these studies have reported impressive The CNet [17], [18] is a trainable multilayer architecture improvements in the generalization behavior, suggesting that composed of multiple feature extraction stages. Each stage con- GBM is a powerful machine learning technique. sists of three layers: 1) a convolutional layer; 2) a nonlinearity Although much usefulwork hasbeen done, mostof the studies layer; and 3) a pooling layer. The architecture of a CNet is have focused on decision trees, and no related research into CNets designed to take advantage of the 2-D structure of the input has been reported in the literature. For the first time, this paper image. A typical CNet is composed of one, two, or three of such optimally incorporates GBM into a CNet framework. Moreover, feature extraction stages, followed by one or more traditional due to the extreme flexibility of GBM, we introduce a new multi- fully connected layers and a final classifier layer, as shown in class soft-max loss function to combine the GBM with CNet Fig. 1. Each layer type is described in the following. framework. However, because of the limitation of the training Convolutional Layer: The input to the convolutional layer data in the satellite image and the high computation complexity is a 3-D array with r 2-D feature maps of size m × n. Each i of the ensemble CNet framework, we also develop a novel ran- component is denoted as xm,n, and each feature map is denoted i dom CNet (RCNet), which can reuse the weight which is learned as x . The output is also a 3-D array m1 × n1 × k, composed in each CNet model and reduce the computation complexity. of k feature maps of size m1 × n1. The convolutional layer has In this paper, we systematically consider the following ques- k trainable filters of size l × l × q, also called the filter bank W , tions. Are “strong” models like CNets suitable for an ensemble which connect the input feature map to the output feature framework? Does the GBM framework work well for CNets? map. The convolutional layer computes the output feature map s q s ∗ i ∗ Due to the flexibility of GBM and the architecture of CNets, z = i Wi x + bs,where is the 2-D discrete convolution how should we choose the loss function for scene classification? operator and b is a trainable bias parameter. Because of the high computational complexity of CNets, is Nonlinearity Layer: In a traditional CNet, this layer simply there a way to reuse the weight which is learned in each CNet consists of a pointwise nonlinearity function applied to each model and reduce the number of parameters? component in the feature map.
Recommended publications
  • Arxiv:2006.04059V1 [Cs.LG] 7 Jun 2020
    Soft Gradient Boosting Machine Ji Feng1;2, Yi-Xuan Xu1;3, Yuan Jiang3, Zhi-Hua Zhou3 [email protected], fxuyx, jiangy, [email protected] 1Sinovation Ventures AI Institute 2Baiont Technology 3National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China Abstract Gradient Boosting Machine has proven to be one successful function approximator and has been widely used in a variety of areas. However, since the training procedure of each base learner has to take the sequential order, it is infeasible to parallelize the training process among base learners for speed-up. In addition, under online or incremental learning settings, GBMs achieved sub-optimal performance due to the fact that the previously trained base learners can not adapt with the environment once trained. In this work, we propose the soft Gradient Boosting Machine (sGBM) by wiring multiple differentiable base learners together, by injecting both local and global objectives inspired from gradient boosting, all base learners can then be jointly optimized with linear speed-up. When using differentiable soft decision trees as base learner, such device can be regarded as an alternative version of the (hard) gradient boosting decision trees with extra benefits. Experimental results showed that, sGBM enjoys much higher time efficiency with better accuracy, given the same base learner in both on-line and off-line settings. arXiv:2006.04059v1 [cs.LG] 7 Jun 2020 1. Introduction Gradient Boosting Machine (GBM) [Fri01] has proven to be one successful function approximator and has been widely used in a variety of areas [BL07, CC11]. The basic idea is to train a series of base learners that minimize some predefined differentiable loss function in a sequential fashion.
    [Show full text]
  • Xgboost: a Scalable Tree Boosting System
    XGBoost: A Scalable Tree Boosting System Tianqi Chen Carlos Guestrin University of Washington University of Washington [email protected] [email protected] ABSTRACT problems. Besides being used as a stand-alone predictor, it Tree boosting is a highly effective and widely used machine is also incorporated into real-world production pipelines for learning method. In this paper, we describe a scalable end- ad click through rate prediction [15]. Finally, it is the de- to-end tree boosting system called XGBoost, which is used facto choice of ensemble method and is used in challenges widely by data scientists to achieve state-of-the-art results such as the Netflix prize [3]. on many machine learning challenges. We propose a novel In this paper, we describe XGBoost, a scalable machine learning system for tree boosting. The system is available sparsity-aware algorithm for sparse data and weighted quan- 2 tile sketch for approximate tree learning. More importantly, as an open source package . The impact of the system has we provide insights on cache access patterns, data compres- been widely recognized in a number of machine learning and sion and sharding to build a scalable tree boosting system. data mining challenges. Take the challenges hosted by the machine learning competition site Kaggle for example. A- By combining these insights, XGBoost scales beyond billions 3 of examples using far fewer resources than existing systems. mong the 29 challenge winning solutions published at Kag- gle's blog during 2015, 17 solutions used XGBoost. Among these solutions, eight solely used XGBoost to train the mod- Keywords el, while most others combined XGBoost with neural net- Large-scale Machine Learning s in ensembles.
    [Show full text]
  • Downloaded from the Cancer Imaging Archive (TCIA)1 [13]
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Deep Learning for Automated Medical Image Analysis Permalink https://escholarship.org/uc/item/78w60726 Author Zhu, Wentao Publication Date 2019 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Deep Learning for Automated Medical Image Analysis DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Wentao Zhu Dissertation Committee: Professor Xiaohui Xie, Chair Professor Charless C. Fowlkes Professor Sameer Singh 2019 c 2019 Wentao Zhu DEDICATION To my wife, little son and my parents ii TABLE OF CONTENTS Page LIST OF FIGURES vi LIST OF TABLES x LIST OF ALGORITHMS xi ACKNOWLEDGMENTS xii CURRICULUM VITAE xiii ABSTRACT OF THE DISSERTATION xvi 1 Introduction 1 1.1 Dissertation Outline and Contributions . 3 2 Adversarial Deep Structured Nets for Mass Segmentation from Mammograms 7 2.1 Introduction . 7 2.2 FCN-CRF Network . 9 2.3 Adversarial FCN-CRF Nets . 10 2.4 Experiments . 12 2.5 Conclusion . 16 3 Deep Multi-instance Networks with Sparse Label Assignment for Whole Mammogram Classification 17 3.1 Introduction . 17 3.2 Deep MIL for Whole Mammogram Mass Classification . 19 3.2.1 Max Pooling-Based Multi-Instance Learning . 20 3.2.2 Label Assignment-Based Multi-Instance Learning . 22 3.2.3 Sparse Multi-Instance Learning . 23 3.3 Experiments . 24 3.4 Conclusion . 27 iii 4 DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification 29 4.1 Introduction .
    [Show full text]
  • Gradient Boosting Meets Graph Neural Networks
    Published as a conference paper at ICLR 2021 BOOST THEN CONVOLVE:GRADIENT BOOSTING MEETS GRAPH NEURAL NETWORKS Sergei Ivanov Liudmila Prokhorenkova Criteo AI Lab; Skoltech Yandex; HSE University; MIPT Paris, France Moscow, Russia [email protected] [email protected] ABSTRACT Graph neural networks (GNNs) are powerful models that have been successful in various graph representation learning tasks. Whereas gradient boosted decision trees (GBDT) often outperform other machine learning methods when faced with heterogeneous tabular data. But what approach should be used for graphs with tabular node features? Previous GNN models have mostly focused on networks with homogeneous sparse features and, as we show, are suboptimal in the heterogeneous setting. In this work, we propose a novel architecture that trains GBDT and GNN jointly to get the best of both worlds: the GBDT model deals with heterogeneous features, while GNN accounts for the graph structure. Our model benefits from end- to-end optimization by allowing new trees to fit the gradient updates of GNN. With an extensive experimental comparison to the leading GBDT and GNN models, we demonstrate a significant increase in performance on a variety of graphs with tabular features. The code is available: https://github.com/nd7141/bgnn. 1 INTRODUCTION Graph neural networks (GNNs) have shown great success in learning on graph-structured data with various applications in molecular design (Stokes et al., 2020), computer vision (Casas et al., 2019), combinatorial optimization (Mazyavkina et al., 2020), and recommender systems (Sun et al., 2020). The main driving force for progress is the existence of canonical GNN architecture that efficiently encodes the original input data into expressive representations, thereby achieving high-quality results on new datasets and tasks.
    [Show full text]
  • Comparative Performance of Machine Learning Algorithms in Cyberbullying Detection: Using Turkish Language Preprocessing Techniques
    Comparative Performance of Machine Learning Algorithms in Cyberbullying Detection: Using Turkish Language Preprocessing Techniques Emre Cihan ATESa*, Erkan BOSTANCIb, Mehmet Serdar GÜZELc a Department of Security Science, Gendarmerie and Coast Guard Academy (JSGA), Ankara, Turkey. b Department of Computer Engineering, Ankara University, Ankara, Turkey. c Department of Computer Engineering, Ankara University, Ankara, Turkey. Abstract With the increasing use of the internet and social media, it is obvious that cyberbullying has become a major problem. The most basic way for protection against the dangerous consequences of cyberbullying is to actively detect and control the contents containing cyberbullying. When we look at today's internet and social media statistics, it is impossible to detect cyberbullying contents only by human power. Effective cyberbullying detection methods are necessary in order to make social media a safe communication space. Current research efforts focus on using machine learning for detecting and eliminating cyberbullying. Although most of the studies have been conducted on English texts for the detection of cyberbullying, there are few studies in Turkish. Limited methods and algorithms were also used in studies conducted on the Turkish language. In addition, the scope and performance of the algorithms used to classify the texts containing cyberbullying is different, and this reveals the importance of using an appropriate algorithm. The aim of this study is to compare the performance of different machine learning algorithms in detecting Turkish messages containing cyberbullying. In this study, nineteen different classification algorithms were used to identify texts containing cyberbullying using Turkish natural language processing techniques. Precision, recall, accuracy and F1 score values were used to evaluate the performance of classifiers.
    [Show full text]
  • Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting
    www.nature.com/scientificreports OPEN Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting Received: 5 June 2018 Hao Wang, Chuyao Liu & Lei Deng Accepted: 10 September 2018 Identifcation of hot spots, a small portion of protein-protein interface residues that contribute the Published: xx xx xxxx majority of the binding free energy, can provide crucial information for understanding the function of proteins and studying their interactions. Based on our previous method (PredHS), we propose a new computational approach, PredHS2, that can further improve the accuracy of predicting hot spots at protein-protein interfaces. Firstly we build a new training dataset of 313 alanine-mutated interface residues extracted from 34 protein complexes. Then we generate a wide variety of 600 sequence, structure, exposure and energy features, together with Euclidean and Voronoi neighborhood properties. To remove redundant and irrelevant information, we select a set of 26 optimal features utilizing a two-step feature selection method, which consist of a minimum Redundancy Maximum Relevance (mRMR) procedure and a sequential forward selection process. Based on the selected 26 features, we use Extreme Gradient Boosting (XGBoost) to build our prediction model. Performance of our PredHS2 approach outperforms other machine learning algorithms and other state-of-the-art hot spot prediction methods on the training dataset and the independent test set (BID) respectively. Several novel features, such as solvent exposure characteristics, second structure features and disorder scores, are found to be more efective in discriminating hot spots. Moreover, the update of the training dataset and the new feature selection and classifcation algorithms play a vital role in improving the prediction quality.
    [Show full text]
  • Development and Evaluation of the Combined Machine Learning Models for the Prediction of Dam Inflow
    water Article Development and Evaluation of the Combined Machine Learning Models for the Prediction of Dam Inflow Jiyeong Hong 1 , Seoro Lee 1, Joo Hyun Bae 2 , Jimin Lee 1, Woon Ji Park 1, Dongjun Lee 1, Jonggun Kim 1 and Kyoung Jae Lim 1,* 1 Department of Regional Infrastructure Engineering, Kangwon National University, Chuncheon-si 24341, Korea; [email protected] (J.H.); [email protected] (S.L.); [email protected] (J.L.); [email protected] (W.J.P.); [email protected] (D.L.); [email protected] (J.K.) 2 Korea Water Environment Research Institute, Chuncheon-si 24408, Korea; [email protected] * Correspondence: [email protected] Received: 3 September 2020; Accepted: 15 October 2020; Published: 20 October 2020 Abstract: Predicting dam inflow is necessary for effective water management. This study created machine learning algorithms to predict the amount of inflow into the Soyang River Dam in South Korea, using weather and dam inflow data for 40 years. A total of six algorithms were used, as follows: decision tree (DT), multilayer perceptron (MLP), random forest (RF), gradient boosting (GB), recurrent neural network–long short-term memory (RNN–LSTM), and convolutional neural network–LSTM (CNN–LSTM). Among these models, the multilayer perceptron model showed the best results in predicting dam inflow, with the Nash–Sutcliffe efficiency (NSE) value of 0.812, root mean squared errors (RMSE) of 77.218 m3/s, mean absolute error (MAE) of 29.034 m3/s, correlation coefficient (R) of 0.924, and determination coefficient (R2) of 0.817. However, when the amount of dam inflow is below 100 m3/s, the ensemble models (random forest and gradient boosting models) performed better than MLP for the prediction of dam inflow.
    [Show full text]
  • On Interpretability of Artificial Neural Networks
    On Interpretability of Artificial Neural Networks: A Survey Feng-Lei Fan, Student Member, IEEE, Jinjun Xiong, Senior Member, IEEE, Mengzhou Li, Student Member, IEEE, and Ge Wang, Fellow, IEEE Abstract— Deep learning as represented by the artificial deep learning, interpretability is needed to hold a deep learning neural networks (DNNs) has achieved great success in many system accountable [57]. If a model builder can explain why a important areas that deal with text, images, videos, graphs, and model makes a particular decision under certain conditions, so on. However, the black-box nature of DNNs has become one of users would know whether such a model contributes to an the primary obstacles for their wide acceptance in mission- adverse event or not. It is then possible to establish standards critical applications such as medical diagnosis and therapy. Due to the huge potential of deep learning, interpreting neural and protocols to use the deep learning system optimally. networks has recently attracted much research attention. In this The lack of interpretability has become a main barrier of deep paper, based on our comprehensive taxonomy, we systematically learning in its wide acceptance in mission-critical applications. review recent studies in understanding the mechanism of neural For example, regulations were proposed by European Union in networks, describe applications of interpretability especially in medicine, and discuss future directions of interpretability 2016 that individuals affected by algorithms have the right to research, such as in relation to fuzzy logic and brain science. obtain an explanation [61]. Despite great research efforts made Index Terms—Deep learning, neural networks, on interpretability of deep learning and availability of several interpretability, survey.
    [Show full text]
  • An Intuitive Exploration of Artificial Intelligence
    An Intuitive Exploration of Artificial Intelligence Simant Dube An Intuitive Exploration of Artificial Intelligence Theory and Applications of Deep Learning Simant Dube Technology and Innovation Office Varian Medical Systems A Siemens Healthineers Company Palo Alto, CA, USA ISBN 978-3-030-68623-9 ISBN 978-3-030-68624-6 (eBook) https://doi.org/10.1007/978-3-030-68624-6 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
    [Show full text]
  • Comparison of Different U-Net Models for Building Extraction from High- Resolution Aerial Imagery Firat ERDEM, Ugur AVDAN
    ISSN: 2148-9173 Vol: 7 Issue:3 Dec 2020 International Journal of Environment and Geoinformatics (IJEGEO) is an international, multidisciplinary, peer reviewed, open access journal. Comparison of Different U-Net Models for Building Extraction from High- Resolution Aerial Imagery Firat ERDEM, Ugur AVDAN Chief in Editor Prof. Dr. Cem Gazioğlu Co-Editors Prof. Dr. Dursun Zafer Şeker, Prof. Dr. Şinasi Kaya, Prof. Dr. Ayşegül Tanık and Assist. Prof. Dr. Volkan Demir Guest Editor Dr. Nedim Onur AYKUT Editorial Committee (December 2020) Assos. Prof. Dr. Abdullah Aksu (TR), Assit. Prof. Dr. Uğur Algancı (TR), Prof. Dr. Bedri Alpar (TR), Prof. Dr. Levent Bat (TR), Prof. Dr. Paul Bates (UK), İrşad Bayırhan (TR), Prof. Dr. Bülent Bayram (TR), Prof. Dr. Luis M. Botana (ES), Prof. Dr. Nuray Çağlar (TR), Prof. Dr. Sukanta Dash (IN), Dr. Soofia T. Elias (UK), Prof. Dr. A. Evren Erginal (TR), Assoc. Prof. Dr. Cüneyt Erenoğlu (TR), Dr. Dieter Fritsch (DE), Prof. Dr. Çiğdem Göksel (TR), Prof.Dr. Lena Halounova (CZ), Prof. Dr. Manik Kalubarme (IN), Dr. Hakan Kaya (TR), Assist. Prof. Dr. Serkan Kükrer (TR), Assoc. Prof. Dr. Maged Marghany (MY), Prof. Dr. Michael Meadows (ZA), Prof. Dr. Nebiye Musaoğlu (TR), Prof. Dr. Masafumi Nakagawa (JP), Prof. Dr. Hasan Özdemir (TR), Prof. Dr. Chryssy Potsiou (GR), Prof. Dr. Erol Sarı (TR), Prof. Dr. Maria Paradiso (IT), Prof. Dr. Petros Patias (GR), Prof. Dr. Elif Sertel (TR), Prof. Dr. Nüket Sivri (TR), Prof. Dr. Füsun Balık Şanlı (TR), Prof. Dr. Uğur Şanlı (TR), Duygu Ülker (TR), Prof. Dr. Seyfettin Taş (TR), Assoc. Prof. Dr. Ömer Suat Taşkın (US), Assist.
    [Show full text]
  • Imitation Learning in Relational Domains: a Functional-Gradient Boosting Approach
    Imitation Learning in Relational Domains: A Functional-Gradient Boosting Approach Sriraam Natarajan and Saket Joshi+ and Prasad Tadepalli+ and Kristian Kersting# and Jude Shavlik∗ Wake Forest University School of Medicine, USA + Oregon State University, USA # Fraunhofer IAIS, Germany, ∗ University of Wisconsin-Madison, USA Abstract follow a meaningful trajectory. Nevertheless, techniques used from supervised learning have been successful for imitation Imitation learning refers to the problem of learn- learning [Ratliff et al., 2006]. We follow this tradition and ing how to behave by observing a teacher in ac- investigate the use of supervised learning methods to learn tion. We consider imitation learning in relational behavioral policies. domains, in which there is a varying number of ob- jects and relations among them. In prior work, sim- Inverse reinforcement learning is a popular approach to ple relational policies are learned by viewing imi- imitation learning studied under the name of apprentice- tation learning as supervised learning of a function ship learning [Abbeel and Ng, 2004; Ratliff et al., 2006; from states to actions. For propositional worlds, Neu and Szepesvari, 2007; Syed and Schapire, 2007]. Here functional gradient methods have been proved to one would assume that the observations are generated by a be beneficial. They are simpler to implement than near-optimal policy of a Markov Decision Process (MDP) most existing methods, more efficient, more natu- with an unknown reward function. The approaches usually rally satisfy common constraints on the cost func- take the form of learning the reward function of the agent and tion, and better represent our prior beliefs about solving the corresponding MDP.
    [Show full text]
  • Episodic Exploration for Deep Deterministic Policies for Starcraft Micromanagement
    Published as a conference paper at ICLR 2017 EPISODIC EXPLORATION FOR DEEP DETERMINISTIC POLICIES FOR STARCRAFT MICROMANAGEMENT Nicolas Usunier∗, Gabriel Synnaeve∗, Zeming Lin, Soumith Chintala Facebook AI Research {usunier,gab,zlin,soumith}@fb.com ABSTRACT We consider scenarios from the real-time strategy game StarCraft as benchmarks for reinforcement learning algorithms. We focus on micromanagement, that is, the short-term, low-level control of team members during a battle. We propose several scenarios that are challenging for reinforcement learning algorithms because the state- action space is very large, and there is no obvious feature representation for the value functions. We describe our approach to tackle the micromanagement scenarios with deep neural network controllers from raw state features given by the game engine. We also present a heuristic reinforcement learning algorithm which combines direct exploration in the policy space and backpropagation. This algorithm collects traces for learning using deterministic policies, which appears much more efficient than, e.g., -greedy exploration. Experiments show that this algorithm allows to successfully learn non-trivial strategies for scenarios with armies of up to 15 agents, where both Q-learning and REINFORCE struggle. 1 INTRODUCTION StarCraft1 is a real-time strategy (RTS) game in which each player must build an army and control individual units to destroy the opponent’s army. As of today, StarCraft is considered one of the most difficult games for computers, and the best bots only reach the level of high amateur human players (Churchill, 2015). The main difficulty comes from the need to control a large number of units in partially observable environment, with very large state and action spaces: for example, in a typical game, there are at least 101685 possible states whereas the game of Go has about 10170 states.
    [Show full text]