Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results

Total Page:16

File Type:pdf, Size:1020Kb

Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results NASA/TM-1998-206552 Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results Frank W. Burcham, Jr., Trindel A. Maine, and John J. Burken Dryden Flight Research Center Edwards, California John Bull CAELUM Research Corporation NASA Ames Research Center Moffett Field, California May 1998 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA Scientific and Technical technical conferences, symposia, seminars, Information (STI) Program Office plays a key or other meetings sponsored or cosponsored part in helping NASA maintain this by NASA. important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA programs, projects, and mission, NASA’s scientific and technical information. often concerned with subjects having The NASA STI Program Office provides access substantial public interest. to the NASA STI Database, the largest collection of aeronautical and space science STI in the • TECHNICAL TRANSLATION. English- world. The Program Office is also NASA’s language translations of foreign scientific institutional mechanism for disseminating the and technical material pertinent to results of its research and development activities. NASA’s mission. These results are published by NASA in the NASA STI Report Series, which includes the Specialized services that complement the STI following report types: Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research • TECHNICAL PUBLICATION. Reports of results . even providing videos. completed research or a major significant phase of research that present the results of For more information about the NASA STI NASA programs and include extensive data Program Office, see the following: or theoretical analysis. Includes compilations of significant scientific and technical data • Access the NASA STI Program Home Page and information deemed to be of continuing at http://www.sti.nasa.gov reference value. NASA’s counterpart of peer-reviewed formal professional papers but • E-mail your question via the Internet to has less stringent limitations on manuscript [email protected] length and extent of graphic presentations. • Fax your question to the NASA Access Help • TECHNICAL MEMORANDUM. Scientific Desk at (301) 621-0134 and technical findings that are preliminary or of specialized interest, e.g., quick release • Telephone the NASA Access Help Desk at reports, working papers, and bibliographies (301) 621-0390 that contain minimal annotation. Does not contain extensive analysis. • Write to: NASA Access Help Desk • CONTRACTOR REPORT. Scientific and NASA Center for AeroSpace Information technical findings by NASA-sponsored 7121 Standard Drive contractors and grantees. Hanover, MD 21076-1320 NASA/TM-1998-206552 Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results Frank W. Burcham, Jr., Trindel A. Maine, and John J. Burken Dryden Flight Research Center Edwards, California John Bull CAELUM Research Corporation NASA Ames Research Center Moffett Field, California National Aeronautics and Space Administration Dryden Flight Research Center Edwards, California 93523-0273 May 1998 NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration. Available from the following: NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS) 7121 Standard Drive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161-2171 (301) 621-0390 (703) 487-4650 ABSTRACT PCA propulsion-controlled aircraft TOC thrust-only control With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has INTRODUCTION become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion- In the past 25 years, more than 10 aircraft, including controlled aircraft (PCA) system in which computer- B-747, L-1011, DC-10, B-52, and C-5A aircraft, expe- controlled engine thrust provides emergency flight rienced major flight control system failures, and the control. An F-15 and an MD-11 airplane have been crews tried to use engine thrust for emergency flight landed without using any flight control surfaces. Pre- control. In most cases, a crash resulted; the B-747, liminary studies have also been conducted that show DC-10, and C-5A crashes claimed more than 1200 lives. A summary of these accidents has previ- that engines on only one wing can provide some flight ously been published.1 control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the oper- With the advent of digital engine control systems, ating engine(s). Simulator tests of several airplanes considering the use of engine thrust for emergency with no flight control surfaces operating and all engines flight control became feasible. To investigate this possi- out on the left wing have all shown positive control bility, NASA, the United States Department of capability within the available range of lateral center- Defense, industry, and university researchers have been of-gravity offset. Propulsion-controlled aircraft sys- conducting flight, ground simulator, and analytical tems that can operate without modifications to engine studies. One objective is to determine the degree of control systems, thus allowing PCA technology to be control available with manual manipulation of engine installed on less capable airplanes or at low cost, are throttles for various classes of airplanes. Simulation also desirable. Further studies have examined simpli- tests have included B-720, B-747-400, B-727, MD-11, fied “PCA Lite” and “PCA Ultralite” concepts in which MD-90, C-402, C-17, SR-71, F-18, and F-15 airplanes. thrust control is provided by existing systems such as Flight tests have included B-747-100, B-777, MD-11, autothrottles or a combination of existing systems and T-39, Lear 24, F-18, F-15, T-38, and PA-30 airplanes. manual pilot control. The pilots use differential throttle control to generate sideslip that, through the dihedral effect, results in roll. Symmetric throttle inputs are also used to control NOMENCLATURE flightpath. For all tested airplanes, these tests have shown sufficient control capability to maintain gross AGL above ground level (radar altitude) control; both flightpath and track angle may be con- CG center of gravity trolled to within 2° to 4°. These studies have also shown that making a safe runway landing is exceed- CGX longitudinal center of gravity, percent of ingly difficult using only manual thrust-only control mean aerodynamic chord (TOC)2 because of the difficulty in controlling the CGY lateral center of gravity, distance from phugoid and dutch roll modes, slow engine response, fuselage centerline, in. and weak control moments. CGZ vertical center of gravity, distance from To provide safe landing capability, NASA Dryden fuselage centerline, in. Flight Research Center (Edwards, California) engi- neers and pilots have conceived and developed a EPR engine pressure ratio system, called propulsion-controlled aircraft (PCA), FADEC full-authority digital engine control that uses only augmented engine thrust for flight con- trol. The PCA system uses pilot flightpath inputs and FPA flightpath angle, deg airplane sensor feedback parameters to provide appro- FDS Flight Deck Simulator priate engine thrust commands for emergency flight control. The concept was first evaluated on a piloted ILS instrument landing system B-720 simulation.3 This augmented system was evaluated in simulation lateral control could be provided using the limited- and flight tests on the F-15 airplane,1, 4 and actual land- authority engine trim system installed on some aircraft. ings were made using PCA control. The PCA technol- For airplanes without digital engine controls, a still ogy was also successfully evaluated using a simulation simpler system called “PCA Ultralite” would use the of a conceptual megatransport.5 Another major PCA autothrottles to provide pitch control, and the flight simulation study has been conducted at NASA Ames crew would provide lateral control by differential throt- Research Center (Moffett Field, California) using the tle manipulation. 6 advanced concepts flight simulator, an airplane that Studies on the B-720, MD-11, and B-747-400 simu- closely resembles a B-757 twin-jet airplane. More lations show the feasibility of emergency control using recently, a PCA system was designed and tested on the engine thrust and other systems, such as lateral fuel B-747-400 simulator at NASA Ames. Approaches and transfer, with all engines out on one side of a two-, landings using the PCA system have been flown by three-, or four-engine airplane.13 In preliminary simu- more than 30 government, industry, and commercial 7 lation tests, open-loop manual throttle control and airline pilots. closed-loop PCA control have been tested with the With the success of the F-15 PCA flight program and lateral center of gravity, CGY, offset. the other simulation studies, The Boeing Company This paper presents the principles of throttles-only (formerly McDonnell Douglas Aerospace, Long flight control and summarizes
Recommended publications
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • FAA Advisory Circular AC 91-74B
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Pilot Guide: Flight in Icing Conditions Date:10/8/15 AC No: 91-74B Initiated by: AFS-800 Change: This advisory circular (AC) contains updated and additional information for the pilots of airplanes under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The purpose of this AC is to provide pilots with a convenient reference guide on the principal factors related to flight in icing conditions and the location of additional information in related publications. As a result of these updates and consolidating of information, AC 91-74A, Pilot Guide: Flight in Icing Conditions, dated December 31, 2007, and AC 91-51A, Effect of Icing on Aircraft Control and Airplane Deice and Anti-Ice Systems, dated July 19, 1996, are cancelled. This AC does not authorize deviations from established company procedures or regulatory requirements. John Barbagallo Deputy Director, Flight Standards Service 10/8/15 AC 91-74B CONTENTS Paragraph Page CHAPTER 1. INTRODUCTION 1-1. Purpose ..............................................................................................................................1 1-2. Cancellation ......................................................................................................................1 1-3. Definitions.........................................................................................................................1 1-4. Discussion .........................................................................................................................6
    [Show full text]
  • PROPULSION SYSTEM/FLIGHT CONTROL INTEGRATION for SUPERSONIC AIRCRAFT Paul J
    PROPULSION SYSTEM/FLIGHT CONTROL INTEGRATION FOR SUPERSONIC AIRCRAFT Paul J. Reukauf and Frank W. Burcham , Jr. NASA Dryden Flight Research Center SUMMARY The NASA Dryden Flight Research Center is engaged in several programs to study digital integrated control systems. Such systems allow minimization of undesirable interactions while maximizing performance at all flight conditions. One such program is the YF-12 cooperative control program. In this program, the existing analog air-data computer, autothrottle, autopilot, and inlet control systems are to be converted to digital systems by using a general purpose airborne computer and interface unit. First, the existing control laws are to be programed and tested in flight. Then, integrated control laws, derived using accurate mathematical models of the airplane and propulsion system in conjunction with modern control techniques, are to be tested in flight. Analysis indicates that an integrated autothrottle-autopilot gives good flight path control and that observers can be used to replace failed sensors. INTRODUCTION Supersonic airplanes, such as the XB-70, YF-12, F-111, and F-15 airplanes, exhibit strong interactions between the engine and the inlet or between the propul- sion system and the airframe (refs. 1 and 2) . Taking advantage of possible favor- able interactions and eliminating or minimizing unfavorable interactions is a chal- lenging control problem with the potential for significant improvements in fuel consumption, range, and performance. In the past, engine, inlet, and flight control systems were usually developed separately, with a minimum of integration. It has often been possible to optimize the controls for a single design point, but off-design control performance usually suffered.
    [Show full text]
  • Using an Autothrottle to Compare Techniques for Saving Fuel on A
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr.
    [Show full text]
  • 6. Chemical-Nuclear Propulsion MAE 342 2016
    2/12/20 Chemical/Nuclear Propulsion Space System Design, MAE 342, Princeton University Robert Stengel • Thermal rockets • Performance parameters • Propellants and propellant storage Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Chemical (Thermal) Rockets • Liquid/Gas Propellant –Monopropellant • Cold gas • Catalytic decomposition –Bipropellant • Separate oxidizer and fuel • Hypergolic (spontaneous) • Solid Propellant ignition –Mixed oxidizer and fuel • External ignition –External ignition • Storage –Burn to completion – Ambient temperature and pressure • Hybrid Propellant – Cryogenic –Liquid oxidizer, solid fuel – Pressurized tank –Throttlable –Throttlable –Start/stop cycling –Start/stop cycling 2 2 1 2/12/20 Cold Gas Thruster (used with inert gas) Moog Divert/Attitude Thruster and Valve 3 3 Monopropellant Hydrazine Thruster Aerojet Rocketdyne • Catalytic decomposition produces thrust • Reliable • Low performance • Toxic 4 4 2 2/12/20 Bi-Propellant Rocket Motor Thrust / Motor Weight ~ 70:1 5 5 Hypergolic, Storable Liquid- Propellant Thruster Titan 2 • Spontaneous combustion • Reliable • Corrosive, toxic 6 6 3 2/12/20 Pressure-Fed and Turbopump Engine Cycles Pressure-Fed Gas-Generator Rocket Rocket Cycle Cycle, with Nozzle Cooling 7 7 Staged Combustion Engine Cycles Staged Combustion Full-Flow Staged Rocket Cycle Combustion Rocket Cycle 8 8 4 2/12/20 German V-2 Rocket Motor, Fuel Injectors, and Turbopump 9 9 Combustion Chamber Injectors 10 10 5 2/12/20
    [Show full text]
  • Boeing Submission for Asiana Airlines (AAR) 777-200ER HL7742 Landing Accident at San Francisco – 6 July 2013
    Michelle E. Bernson The Boeing Company Chief Engineer P.O. Box 3707 MC 07-32 Air Safety Investigation Seattle, WA 98124-2207 Commercial Airplanes 17 March 2014 66-ZB-H200-ASI-18750 Mr. Bill English Investigator In Charge National Transportation Safety Board 490 L’Enfant Plaza, SW Washington DC 20594 via e-mail: [email protected] Subject: Boeing Submission for Asiana Airlines (AAR) 777-200ER HL7742 Landing Accident at San Francisco – 6 July 2013 Reference: NTSB Tech Review Meeting on 13 February 2014 Dear Mr. English: As requested during the reference technical review, please find the attached Boeing submission on the subject accident. Per your request we are sending this electronic version to your attention for distribution within the NTSB. We would like to thank the NTSB for giving us the opportunity to make this submission. If you have any questions, please don’t hesitate to contact us. Best regardsregards,, Michelle E. E Bernson Chief Engineer Air Safety Investigation Enclosure: Boeing Submission to the NTSB for the subject accident Submission to the National Transportation Safety Board for the Asiana 777-200ER – HL7742 Landing Accident at San Francisco 6 July 2013 The Boeing Company 17 March 2014 INTRODUCTION On 6 July 2013, at approximately 11:28 a.m. Pacific Standard Time, a Boeing 777-200ER airplane, registration HL7742, operating as Asiana Airlines Flight 214 on a flight from Seoul, South Korea, impacted the seawall just short of Runway 28L at San Francisco International Airport. Visual meteorological conditions prevailed at the time of the accident with clear visibility and sunny skies.
    [Show full text]
  • Helicopter Turboshafts
    Helicopter Turboshafts Luke Stuyvenberg University of Colorado at Boulder Department of Aerospace Engineering The application of gas turbine engines in helicopters is discussed. The work- ings of turboshafts and the history of their use in helicopters is briefly described. Ideal cycle analyses of the Boeing 502-14 and of the General Electric T64 turboshaft engine are performed. I. Introduction to Turboshafts Turboshafts are an adaptation of gas turbine technology in which the principle output is shaft power from the expansion of hot gas through the turbine, rather than thrust from the exhaust of these gases. They have found a wide variety of applications ranging from air compression to auxiliary power generation to racing boat propulsion and more. This paper, however, will focus primarily on the application of turboshaft technology to providing main power for helicopters, to achieve extended vertical flight. II. Relationship to Turbojets As a variation of the gas turbine, turboshafts are very similar to turbojets. The operating principle is identical: atmospheric gases are ingested at the inlet, compressed, mixed with fuel and combusted, then expanded through a turbine which powers the compressor. There are two key diferences which separate turboshafts from turbojets, however. Figure 1. Basic Turboshaft Operation Note the absence of a mechanical connection between the HPT and LPT. An ideal turboshaft extracts with the HPT only the power necessary to turn the compressor, and with the LPT all remaining power from the expansion process. 1 of 10 American Institute of Aeronautics and Astronautics A. Emphasis on Shaft Power Unlike turbojets, the primary purpose of which is to produce thrust from the expanded gases, turboshafts are intended to extract shaft horsepower (shp).
    [Show full text]
  • Session 6:Analytical Approximations for Low Thrust Maneuvers
    Session 6: Analytical Approximations for Low Thrust Maneuvers As mentioned in the previous lecture, solving non-Keplerian problems in general requires the use of perturbation methods and many are only solvable through numerical integration. However, there are a few examples of low-thrust space propulsion maneuvers for which we can find approximate analytical expressions. In this lecture, we explore a couple of these maneuvers, both of which are useful because of their precision and practical value: i) climb or descent from a circular orbit with continuous thrust, and ii) in-orbit repositioning, or walking. Spiral Climb/Descent We start by writing the equations of motion in polar coordinates, 2 d2r �dθ � µ − r + = a (1) 2 2 r dt dt r 2 d θ 2 dr dθ aθ + = (2) 2 dt r dt dt r We assume continuous thrust in the angular direction, therefore ar = 0. If the acceleration force along θ is small, then we can safely assume the orbit will remain nearly circular and the semi-major axis will be just slightly different after one orbital period. Of course, small and slightly are vague words. To make the analysis rigorous, we need to be more precise. Let us say that for this approximation to be valid, the angular acceleration has to be much smaller than the corresponding centrifugal or gravitational forces (the last two terms in the LHS of Eq. (1)) and that the radial acceleration (the first term in the LHS in the same equation) is negligible. Given these assumptions, from Eq. (1), dθ r µ d2θ 3 r µ dr ≈ ! ≈ − (3) 3 2 5 dt r dt 2 r dt Substituting into Eq.
    [Show full text]
  • Thrust Reverser
    DC-10THRUST REVERSER Following an airplane accident in which inadver- tent thrust reverser deployment was considered a major contributor, the aviation industry and SAFETY the U.S. Federal Aviation Administration (FAA) adopted new criteria for evaluating the safety of ENHANCEMENT thrust reverser systems on commercial airplanes. Several airplane models were determined to be uncontrollable in some portions of the flight HARRY SLUSHER envelope after inadvertent deployment of the PROGRAM MANAGER AIRCRAFT MODIFICATION ENGINEERING thrust reverser. In response, Boeing and the BOEING COMMERCIAL AIRPLANES GROUP SAFETY FAA issued service bulletins and airworthiness AERO directives, respectively, for mandatory inspec- 39 tions and installation of thrust reverser actuation system locks on affected Boeing-designed airplanes. Boeing and the FAA are issuing similar documents for all models of the DC-10. air seal, fairing, and the aft frame; MODIFICATION OF THE THRUST a proposed AD for the indication reverser. This allows operators to stock and checks of the feedback rod-to-yoke 2 system on all models of the DC-10. neutral spare reversers and quickly The safety enhancement program REVERSER INDICATION SYSTEM oeing has initiated a four- alignment, translating cowl auto- An AD mandating the incorporation of configure them for any engine position. phased safety enhancement for the DC-10 is designed to improve restow function, position indication The second phase of the DC-10 safety B enhancement program involves modify- Boeing Service Bulletin DC10-78-060 The basic design elements of the program for thrust reverser the reliability of the thrust reverser for the overpressure shutoff valve, is expected by the end of 2000.
    [Show full text]
  • The Solid Rocket Booster Auxiliary Power Unit - Meeting the Challenge
    THE SOLID ROCKET BOOSTER AUXILIARY POWER UNIT - MEETING THE CHALLENGE Robert W. Hughes Structures and Propulsion Laboratory Marshall Space Flight Center, Alabama ABSTRACT The thrust vector control systems of the solid rocket boosters are turbine-powered, electrically controlled hydraulic systems which function through hydraulic actuators to gimbal the nozzles of the solid rocket boosters and provide vehicle steering for the Space Shuttle. Turbine power for the thrust vector control systems is provided through hydrazine fueled auxiliary power units which drive the hydraulic pumps. The solid rocket booster auxiliary power unit resulted from trade studies which indicated sig­ nificant advantages would result if an existing engine could be found to meet the program goal of 20 missions reusability and adapted to meet the seawater environments associated with ocean landings. During its maturation, the auxiliary power unit underwent many design iterations and provided its flight worthiness through full qualification programs both as a component and as part of the thrust vector control system. More significant, the auxiliary power unit has successfully completed six Shuttle missions. THE SOLID ROCKET BOOSTER CHALLENGE The challenge associated with the development of the Solid Rocket Booster (SRB) Auxiliary Power Unit (APU) was to develop a low cost reusable APU, compatible with an "operational" SRB. This challenge, as conceived, was to be one of adaptation more than innovation. As it turned out, the SRB APU development had elements of both. During the technical t~ade studies to select a SRB thrust vector control (TVC) system, several alternatives for providing hydraulic power were evaluated. A key factor in the choice of the final TVC system was the Orbiter APU development program, then in progress at Sundstrand Aviation.
    [Show full text]
  • Twins in an Ever-Changing Business Aviation World, Turboprops
    Textron is betting big 16 with the Cessna Denali that turboprops have a solid future. Twins Dornier Seastar After several years of uncer- tainty, the centerline push-pull, all-composite amphibian twin appears back on track after the Dornier family formed a new joint venture (Dornier Seawings) to manufacture the aircraft with China’s Wuxi Industrial Development Group and the Wuxi Communications Industry Group. It then struck a deal in February this year for component airframe parts for the first 10 aircraft to be manu- factured at Diamond Aircraft’s by Mark Huber plant in London, Ontario, and shipped to Dornier Seawings in 16 Oberpfaffenhofen, Germany, In an ever-changing business aviation world, turboprops for final assembly. Produc- represent timeless value in a steady market segment. tion eventually will be shifted to China. The interior of the Seastar Perhaps it is appropriate that things do not move very fast in the turboprop segment. Consider this: can be tailored to many dif- the Dornier Seastar first flew in 1984, was certified in 1991 and apparently will at last enter production ferent operations: personal, later this year. Or that Cessna, after dipping its toes in the pressurized turboprop single market for the commercial, government or better part of a decade, finally decided to jump into the pool this year—with the Denali—and likely will corporate missions. It fea- tures a light and spacious have an aircraft to customers by 2020. Or India’s NAL Saras. After three decades of development, two cabin that can be equipped flying prototypes and reportedly nearly half a billion dollars, the Indian government finally decided to with various configurations, pull the financial feeding tube and kill it.
    [Show full text]
  • Thrust and Power Available, Maximum and Minimum Cruise Velocity, Effects of Altitude on Power Thrust Available
    Module-2 Lecture-7 Cruise Flight - Thrust and Power available, Maximum and minimum cruise velocity, Effects of altitude on power Thrust available • As we have seen earlier, thrust and power requirements are dictated by the aero- dynamic characteristics and weight of the airplane. In contrast, thrust and power available are strictly associated with the engine of the aircraft. • The thrust delivered by typical reciprocating piston engines used in aircraft with propellers varies with velocity as shown in Figure 1(a). • It should be noted that the thrust at zero velocity (static thrust) is maximum and it decreases with increase in forward velocity. The reason for this behavior is that the blade tip of the propellers encounter compressibility problems leading to abrupt decrease in the available thrust near speed of sound. • However, as seen from Figure 1(b), the thrust delivered by a turbojet engine stays relatively constant with increase in velocity. Figure 1: Variation in available thrust with velocity of the (a) reciprocating engine- propeller powered aircraft and (b) turbojet engine powered aircraft 1 Power Power required for any aircraft is a characteristic of the aerodynamic design and weight of that aircraft. However, the power available, PA is a characteristic of the power plant (engine) of the aircraft. Typically, a piston engine generates power by burning fuel in the cylinders and then using this energy to move pistons in a reciprocating fashion (Figure 2). The power delivered to the piston driven propeller engine by the crankshaft is termed Figure 2: Schematic of a reciprocating engine as the shaft brake power P .
    [Show full text]