Introduction Gaussian Elimination

Total Page:16

File Type:pdf, Size:1020Kb

Introduction Gaussian Elimination Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction In the preceding article Stepwise Solutions in Maple - Part 1, we detailed the Maple tools for obtaining stepwise solutions of problems in algebra, and calculus of one and several variables. In this sequel, we detail the stepwise tools available in linear algebra. Stepwise solutions in vector calculus will be discussed in our next article. These tools include tutors that implement Gaussian arithmetic for solving linear systems and inverting a square matrix, calculation of eigenvalues and eigenvectors, and task templates that provide simplified interfaces to some of the visualizations tools in the Student LinearAlgebra package. There is also a task template for visualizing the transforming action of a matrix in the plane. But again, we point out that Maple "does" symbolic math, and can therefore be directed to implement the steps of nearly any algorithmic computation. Gaussian Elimination Gaussian elimination combines elementary row operations to transform a matrix into a row-equivalent upper triangular matrix. Table 1 illustrates the stepwise tool for this, the Gaussian Elimination tutor. Table 1 Gaussian Elimination tutor applied to an augmented matrix If row-reduction were being implemented by hand, the first step would most likely be the addition of row 3 to row 1, thereby creating a 1 in the -position. This was done to start the reduction, and the remaining steps shown in Table 1 are the result of the "All Steps" button. If the "Next Step" button were used to step through the reduction, annotation for each step would appear in the upper right-hand window of the tutor. Since the matrix in Table 1 is augmented, it arose from a linear system . To continue with the solution process, press the "Solve System" button, to obtain the contents of Table 2 where back-substitution is then applied stepwise. Table 2 Back-substitution completes the calculation started in Table 1 Pressing the "Equations" button writes the equations corresponding to the upper triangular matrix in Table 1. In succession, pressing the "Solve" buttons implements back-substitution. Gauss-Jordan Elimination Using the same elementary row operations as the Gaussian Elimination tutor, the Gauss-Jordan Elimination tutor illustrated in Table 3 row-reduces the augmented matrix in Table 1 to reduced row-echelon form. Table 3 Reduced row-echelon form by elementary row operations Linear-System Solving The Linear System Solving tutor is simply a portal to either the Gaussian Elimination tutor or the Gauss-Jordan Elimination tutor. The doorway is shown in Table 4. Table 4 The Linear System Solving tutor Matrix Inversion The inverse of the square matrix can be found by solving for its columns via the equations , where the are the columns of the identity matrix . Writing all these systems at once, and solving by transforming to reduced row-echelon form is a standard textbook method for finding the inverse. This calculation is implemented by the Matrix Inverse tutor, as shown in Table 5. Just the matrix is entered - the tutor augments with the identity. Table 5 Matrix inversion by elementary row operations leading to reduced row-echelon form. Eigenvalues The Eigenvalues tutor steps through the calculation of the eigenvalues of a square matrix. The four steps implemented are shown on the left in Table 6, with bold font used to indicate the present step. Table 6 First panel of the Eigenvalues tutor The remaining calculations are summarized in Table 7. Calculate Find Solve for roots so the eigenvalues are Table 7 The final three steps in the Eigenvalues tutor Eigenvectors The Eigenvectors tutor steps through the calculation of the eigenvectors of a square matrix. Table 8 shows the initial panel for this tutor. Table 8 Initial panel for the Eigenvectors tutor If the "Yes" button is selected, the Eigenvalues tutor (see Tables 6 and 7) is launched. If the "No" button is selected, then the panel shown in Table 9 is launched. Note that the default matrix for both the Eigenvalues and Eigenvectors tutors is with eigenvalues . Table 9 Computing eigenvectors in the Eigenvectors tutor Selecting a "Find Eigenvector" button leads to the three panels summarized in Table 10. Table 10 Stepwise calculation of the eigenvector corresponding to the eigenvalue Visualizations Nine of the ten visualization task templates for linear algebra are based on visualization commands in the Student Linear Algebra package. The PlanePlot, ProjectionPlot, and VectorSum commands, implemented in four of these visualization task templates, provide a measure of stepwise calculations. The Matrix Action task template is independent of the Student package, but also provides a significant stepwise presence in the subject. Matrix Action 2-D Table 11 shows the functioning of the Matrix Action 2-D task template. Matrix Action 2-DظVisualizationظBrowse: Linear AlgebraظTasksظTools Matrix Action: 2-D K 43 Matrix: K 65 K 0.8387 0.5446 4.989 7.755 9.221 9.271 Start Eigenpairs 2. -1. Clear .4472 .7071 , .8944 .7071 = 147 0 60120 180 240 300 360 Table 11 Matrix Action 2-D task template After entering the matrix , press the Start button, which then populates all the other fields. The slider at the bottom controls the unit vector x that appears in black in the lower graph. As the slider is moved, the varying components of x and are displayed. The length of is also computed and displayed just above the 2-norm of . The vector is plotted in the upper graph where the dotted curve traces the trajectory that the vector would make as the unit vector x traversed the unit circle. The eigenvalues and eigenvectors (normalized) of are displayed, and in the lower graph, these unit eigenvectors are graphed, one in red and one in green. Since an eigenvector is actually an invariant direction, the negative of each eigenvector is also plotted. If the slider is adjusted so that the length of matches the 2-norm of , the vector in the upper graph should be at its maximum length. Plane Plot The PlanePlot command will draw a plane that is specified by an equation, by a normal vector and a point, and by a pair of (basis) vectors and a point. In addition, there are a number of parameters that control what is added to the plot, such things as the point on the plane nearest to the origin, etc. The Plane Plot task template provides a syntax-free interface for this command, but a number of the parameter settings have necessarily been hard-coded for simplicity. Table 12 shows the task template used to draw the plane determined by the basis vectors and the point Plane PlotظVisualizationsظBrowse: Linear AlgebraظTasksظTools Graph of a Plane Specify a plane in one of the , y, z following ways: Variables: Equation Normal vector and a Equation point Two vectors in the plane (basis) and a point Normal & Point Obtain plot of plane and Normal vector Equation of the plane Basis & Point , P Two vectors in the plane The point on the plane closest to the origin The number of digits in the returned data is controlled by Digits = = 5 Clear and Reset the slider. 4146168 10 12 Click the icon below to execute the PlanePlot command. normal vector: <.53452, -1.8708, 1.0690> equation of plane: <.53452*x-1.8708*y+1.0690*z = 7.21605353130000005> point on plane nearest origin: <.78261, -2.7391, 1.5652> basis vectors: <1., 2., 3.>, <-2., 0., 1.> Table 12 Plane Plot visualization task template The slider at the bottom of the template controls the number of digits used in reporting most of the data at the bottom of the table. The graph itself (shown below) shows the plane, the normal vector (in orange) drawn at the point , a vector (in black) from the origin to the point on the plane nearest the origin, a vector (in red) from the origin to the point , and the basis vectors (in blue). Projection onto a 1-D Subspace The ProjectionPlot command in the Student Linear Algebra package will project a vector onto a one- or two-dimensional subspace. This dual functionality has been distributed across two different task templates. The task template "Projection Plot onto 1-D" projects a vector onto a one-dimensional subspace. A vector in the plane can be projected onto another vector, or onto a line through the origin. The projection and the orthogonal component are computed; a graph is drawn for vectors that are completely numeric. Table 13 contains an example of the projection of one planar vector onto another. Projection Plot onto 1-DظVisualizationsظBrowse: Linear AlgebraظTasksظTools Projection onto 1-D Subspace Vector to be projected Graph Clear All 2, 3 Project onto Vector Line thru origin 1,K 1 Coordinates = [x,y] Coordinates = Other = Projection Float Orthogonal Component Float 1 5 K 2 2 1 5 2 2 Table 13 Projection of one planar vector onto another Projection onto a 2-D Subspace The ProjectionPlot command in the Student Linear Algebra package will project a vector onto a one- or two-dimensional subspace. This dual functionality has been distributed across two different task templates. The task template "Projection Plot onto 2-D" projects a vector onto a two-dimensional subspace, defined either by its basis, or by the equation of a plane through the origin. The projection and the orthogonal component are computed; a graph is drawn for vectors that are completely numeric. Table 14 contains an example of the projection of a vector onto the plane spanned by a given basis of two other vectors. Projection Plot onto 2-DظVisualizationsظBrowse: Linear AlgebraظTasksظTools Project Vector onto Plane in Vector to be projected: Graph Clear All 1, 2, 3 Project onto plane: Basis for plane Plane thru origin 1,K 2, 3 , K 1, 1, 0 Coordinates = [x,y,z] Other = Projection Float Orthogonal Component Float K 17/19 36/19 2/19 36/19 45/19 12/19 Table 14 Projection of a vector onto the plane spanned by a given basis The vector being projected is drawn in black; its component in the plane, in green; and its component orthogonal to the plane, in red.
Recommended publications
  • Arxiv:2003.06292V1 [Math.GR] 12 Mar 2020 Eggnrtr N Ignlmti.Tedaoa Arxi Matrix Diagonal the Matrix
    ALGORITHMS IN LINEAR ALGEBRAIC GROUPS SUSHIL BHUNIA, AYAN MAHALANOBIS, PRALHAD SHINDE, AND ANUPAM SINGH ABSTRACT. This paper presents some algorithms in linear algebraic groups. These algorithms solve the word problem and compute the spinor norm for orthogonal groups. This gives us an algorithmic definition of the spinor norm. We compute the double coset decompositionwith respect to a Siegel maximal parabolic subgroup, which is important in computing infinite-dimensional representations for some algebraic groups. 1. INTRODUCTION Spinor norm was first defined by Dieudonné and Kneser using Clifford algebras. Wall [21] defined the spinor norm using bilinear forms. These days, to compute the spinor norm, one uses the definition of Wall. In this paper, we develop a new definition of the spinor norm for split and twisted orthogonal groups. Our definition of the spinornorm is rich in the sense, that itis algorithmic in nature. Now one can compute spinor norm using a Gaussian elimination algorithm that we develop in this paper. This paper can be seen as an extension of our earlier work in the book chapter [3], where we described Gaussian elimination algorithms for orthogonal and symplectic groups in the context of public key cryptography. In computational group theory, one always looks for algorithms to solve the word problem. For a group G defined by a set of generators hXi = G, the problem is to write g ∈ G as a word in X: we say that this is the word problem for G (for details, see [18, Section 1.4]). Brooksbank [4] and Costi [10] developed algorithms similar to ours for classical groups over finite fields.
    [Show full text]
  • Orthogonal Reduction 1 the Row Echelon Form -.: Mathematical
    MATH 5330: Computational Methods of Linear Algebra Lecture 9: Orthogonal Reduction Xianyi Zeng Department of Mathematical Sciences, UTEP 1 The Row Echelon Form Our target is to solve the normal equation: AtAx = Atb ; (1.1) m×n where A 2 R is arbitrary; we have shown previously that this is equivalent to the least squares problem: min jjAx−bjj : (1.2) x2Rn t n×n As A A2R is symmetric positive semi-definite, we can try to compute the Cholesky decom- t t n×n position such that A A = L L for some lower-triangular matrix L 2 R . One problem with this approach is that we're not fully exploring our information, particularly in Cholesky decomposition we treat AtA as a single entity in ignorance of the information about A itself. t m×m In particular, the structure A A motivates us to study a factorization A=QE, where Q2R m×n is orthogonal and E 2 R is to be determined. Then we may transform the normal equation to: EtEx = EtQtb ; (1.3) t m×m where the identity Q Q = Im (the identity matrix in R ) is used. This normal equation is equivalent to the least squares problem with E: t min Ex−Q b : (1.4) x2Rn Because orthogonal transformation preserves the L2-norm, (1.2) and (1.4) are equivalent to each n other. Indeed, for any x 2 R : jjAx−bjj2 = (b−Ax)t(b−Ax) = (b−QEx)t(b−QEx) = [Q(Qtb−Ex)]t[Q(Qtb−Ex)] t t t t t t t t 2 = (Q b−Ex) Q Q(Q b−Ex) = (Q b−Ex) (Q b−Ex) = Ex−Q b : Hence the target is to find an E such that (1.3) is easier to solve.
    [Show full text]
  • Implementation of Gaussian- Elimination
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-5 Issue-11, April 2016 Implementation of Gaussian- Elimination Awatif M.A. Elsiddieg Abstract: Gaussian elimination is an algorithm for solving systems of linear equations, can also use to find the rank of any II. PIVOTING matrix ,we use Gaussian Jordan elimination to find the inverse of a non singular square matrix. This work gives basic concepts The objective of pivoting is to make an element above or in section (1) , show what is pivoting , and implementation of below a leading one into a zero. Gaussian elimination to solve a system of linear equations. The "pivot" or "pivot element" is an element on the left Section (2) we find the rank of any matrix. Section (3) we use hand side of a matrix that you want the elements above and Gaussian elimination to find the inverse of a non singular square matrix. We compare the method by Gauss Jordan method. In below to be zero. Normally, this element is a one. If you can section (4) practical implementation of the method we inherit the find a book that mentions pivoting, they will usually tell you computation features of Gaussian elimination we use programs that you must pivot on a one. If you restrict yourself to the in Matlab software. three elementary row operations, then this is a true Keywords: Gaussian elimination, algorithm Gauss, statement. However, if you are willing to combine the Jordan, method, computation, features, programs in Matlab, second and third elementary row operations, you come up software.
    [Show full text]
  • Naïve Gaussian Elimination Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America [email protected]
    nbm_sle_sim_naivegauss.nb 1 Naïve Gaussian Elimination Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America [email protected] Introduction One of the most popular numerical techniques for solving simultaneous linear equations is Naïve Gaussian Elimination method. The approach is designed to solve a set of n equations with n unknowns, [A][X]=[C], where A nxn is a square coefficient matrix, X nx1 is the solution vector, and C nx1 is the right hand side array. Naïve Gauss consists of two steps: 1) Forward Elimination: In this step, the unknown is eliminated in each equation starting with the first@ D equation. This way, the equations @areD "reduced" to one equation and@ oneD unknown in each equation. 2) Back Substitution: In this step, starting from the last equation, each of the unknowns is found. To learn more about Naïve Gauss Elimination as well as the pitfall's of the method, click here. A simulation of Naive Gauss Method follows. Section 1: Input Data Below are the input parameters to begin the simulation. This is the only section that requires user input. Once the values are entered, Mathematica will calculate the solution vector [X]. èNumber of equations, n: n = 4 4 è nxn coefficient matrix, [A]: nbm_sle_sim_naivegauss.nb 2 A = Table 1, 10, 100, 1000 , 1, 15, 225, 3375 , 1, 20, 400, 8000 , 1, 22.5, 506.25, 11391 ;A MatrixForm 1 10@88 100 1000 < 8 < 18 15 225 3375< 8 <<D êê 1 20 400 8000 ji 1 22.5 506.25 11391 zy j z j z j z j z è nx1 rightj hand side array, [RHS]: z k { RHS = Table 227.04, 362.78, 517.35, 602.97 ; RHS MatrixForm 227.04 362.78 @8 <D êê 517.35 ji 602.97 zy j z j z j z j z j z k { Section 2: Naïve Gaussian Elimination Method The following sections divide Naïve Gauss elimination into two steps: 1) Forward Elimination 2) Back Substitution To conduct Naïve Gauss Elimination, Mathematica will join the [A] and [RHS] matrices into one augmented matrix, [C], that will facilitate the process of forward elimination.
    [Show full text]
  • Linear Programming
    Linear Programming Lecture 1: Linear Algebra Review Lecture 1: Linear Algebra Review Linear Programming 1 / 24 1 Linear Algebra Review 2 Linear Algebra Review 3 Block Structured Matrices 4 Gaussian Elimination Matrices 5 Gauss-Jordan Elimination (Pivoting) Lecture 1: Linear Algebra Review Linear Programming 2 / 24 columns rows 2 3 a1• 6 a2• 7 = a a ::: a = 6 7 •1 •2 •n 6 . 7 4 . 5 am• 2 3 2 T 3 a11 a21 ::: am1 a•1 T 6 a12 a22 ::: am2 7 6 a•2 7 AT = 6 7 = 6 7 = aT aT ::: aT 6 . .. 7 6 . 7 1• 2• m• 4 . 5 4 . 5 T a1n a2n ::: amn a•n Matrices in Rm×n A 2 Rm×n 2 3 a11 a12 ::: a1n 6 a21 a22 ::: a2n 7 A = 6 7 6 . .. 7 4 . 5 am1 am2 ::: amn Lecture 1: Linear Algebra Review Linear Programming 3 / 24 rows 2 3 a1• 6 a2• 7 = 6 7 6 . 7 4 . 5 am• 2 3 2 T 3 a11 a21 ::: am1 a•1 T 6 a12 a22 ::: am2 7 6 a•2 7 AT = 6 7 = 6 7 = aT aT ::: aT 6 . .. 7 6 . 7 1• 2• m• 4 . 5 4 . 5 T a1n a2n ::: amn a•n Matrices in Rm×n A 2 Rm×n columns 2 3 a11 a12 ::: a1n 6 a21 a22 ::: a2n 7 A = 6 7 = a a ::: a 6 . .. 7 •1 •2 •n 4 . 5 am1 am2 ::: amn Lecture 1: Linear Algebra Review Linear Programming 3 / 24 2 3 2 T 3 a11 a21 ::: am1 a•1 T 6 a12 a22 ::: am2 7 6 a•2 7 AT = 6 7 = 6 7 = aT aT ::: aT 6 .
    [Show full text]
  • Gaussian Elimination and Lu Decomposition (Supplement for Ma511)
    GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1. Matrix multiplication The rule for multiplying matrices is, at first glance, a little complicated. If A is m × n and B is n × p then C = AB is defined and of size m × p with entries n X cij = aikbkj k=1 The main reason for defining it this way will be explained when we talk about linear transformations later on. THEOREM 1.1. (1) Matrix multiplication is associative, i.e. A(BC) = (AB)C. (Henceforth, we will drop parentheses.) (2) If A is m × n and Im×m and In×n denote the identity matrices of the indicated sizes, AIn×n = Im×mA = A. (We usually just write I and the size is understood from context.) On the other hand, matrix multiplication is almost never commutative; in other words generally AB 6= BA when both are defined. So we have to be careful not to inadvertently use it in a calculation. Given an n × n matrix A, the inverse, if it exists, is another n × n matrix A−1 such that AA−I = I;A−1A = I A matrix is called invertible or nonsingular if A−1 exists. In practice, it is only necessary to check one of these. THEOREM 1.2. If B is n × n and AB = I or BA = I, then A invertible and B = A−1. Proof. The proof of invertibility of A will need to wait until we talk about deter- minants.
    [Show full text]
  • Numerical Analysis Lecture Notes Peter J
    Numerical Analysis Lecture Notes Peter J. Olver 4. Gaussian Elimination In this part, our focus will be on the most basic method for solving linear algebraic systems, known as Gaussian Elimination in honor of one of the all-time mathematical greats — the early nineteenth century German mathematician Carl Friedrich Gauss. As the father of linear algebra, his name will occur repeatedly throughout this text. Gaus- sian Elimination is quite elementary, but remains one of the most important algorithms in applied (as well as theoretical) mathematics. Our initial focus will be on the most important class of systems: those involving the same number of equations as unknowns — although we will eventually develop techniques for handling completely general linear systems. While the former typically have a unique solution, general linear systems may have either no solutions or infinitely many solutions. Since physical models require exis- tence and uniqueness of their solution, the systems arising in applications often (but not always) involve the same number of equations as unknowns. Nevertheless, the ability to confidently handle all types of linear systems is a basic prerequisite for further progress in the subject. In contemporary applications, particularly those arising in numerical solu- tions of differential equations, in signal and image processing, and elsewhere, the governing linear systems can be huge, sometimes involving millions of equations in millions of un- knowns, challenging even the most powerful supercomputer. So, a systematic and careful development of solution techniques is essential. Section 4.5 discusses some of the practical issues and limitations in computer implementations of the Gaussian Elimination method for large systems arising in applications.
    [Show full text]
  • Math 304 Linear Algebra from Wednesday: I Basis and Dimension
    Highlights Math 304 Linear Algebra From Wednesday: I basis and dimension I transition matrix for change of basis Harold P. Boas Today: [email protected] I row space and column space June 12, 2006 I the rank-nullity property Example Example continued 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 Let A = 2 4 3 7 1 . R2−2R1 2 4 3 7 1 −−−−−→ 0 0 1 3 −1 4 8 5 11 3 R −4R 4 8 5 11 3 3 1 0 0 1 3 −1 Three-part problem. Find a basis for 1 2 1 2 1 1 2 0 −1 2 R3−R2 R1−R2 5 −−−−→ 0 0 1 3 −1 −−−−→ 0 0 1 3 −1 I the row space (the subspace of R spanned by the rows of the matrix) 0 0 0 0 0 0 0 0 0 0 3 I the column space (the subspace of R spanned by the columns of the matrix) Notice that in each step, the second column is twice the first column; also, the second column is the sum of the third and the nullspace (the set of vectors x such that Ax = 0) I fifth columns. We can analyze all three parts by Gaussian elimination, Row operations change the column space but preserve linear even though row operations change the column space. relations among the columns. The final row-echelon form shows that the column space has dimension equal to 2, and the first and third columns are linearly independent.
    [Show full text]
  • Gaussian Elimination and Matrix Inverse (Updated September 3, 2010) – 1 M
    Gaussian Elimination Example 1 Gaussian elimination for the solution of a linear system transforms the Suppose that we want to solve 0 1 0 1 0 1 system Sx = f into an equivalent system Ux = c with upper triangular 2 4 −2 x1 2 matrix U (that means all entries in U below the diagonal are zero). @ 4 9 −3A @x2A = @ 8 A : (1) −2 −3 7 x 10 This transformation is done by applying three types of transformations to 3 the augmented matrix (S j f). We apply Gaussian elimination. To keep track of the operations, we use, e.g., R2 = R2 − 2 ∗ R1, which means that the new row 2 is computed by Type 1: Interchange two equations; and subtracting 2 times row 1 from row 2. Type 2: Replace an equation with the sum of the same equation and a 0 2 4 −2 2 1 0 2 4 −2 2 1 multiple of another equation. @ 4 9 −3 8 A ! @ 0 1 1 4 A R2 = R2 − 2 ∗ R1 −2 −3 7 10 0 1 5 12 R3 = R3 + R1 Once the augmented matrix (U j f) is transformed into (U j c), where U 0 2 4 −2 2 1 is an upper triangular matrix, we can solve this transformed system ! @ 0 1 1 4 A Ux = c using backsubstitution. 0 0 4 8 R3 = R3 − R2 The original system (1) is equivalent to 0 1 0 1 0 1 2 4 −2 x1 2 @0 1 1 A @x2A = @4A : (2) 0 0 4 x3 8 The system (2) can be solved by backsubstitution.
    [Show full text]
  • Matrix Algebra
    AN INTRODUCTION TO MATRIX ALGEBRA Craig W. Rasmussen Department of Mathematics Naval Postgraduate School AN INTRODUCTION TO MATRIX ALGEBRA Craig W. Rasmussen Department of Mathematics Naval Postgraduate School PREFACE These notes are intended to serve as the text for MA1042:Matrix Algebra, and for its 6-week refresher equivalent, MAR142. The intent of MA1042 and MAR142 is to equip students with the fundamental mechanical skills for follow-on courses in linear algebra that require a basic working knowledge of matrix algebra and complex arithmetic. In the Department of Mathematics, the principal target course is MA3042, Linear Algebra. Those whose plans lead to MA3046, Computational Linear Algebra, are urged to take MA1043 rather than MA1042, although these notes might serve as the nucleus of the material covered in that course. Other disciplines make heavy use of these techniques, as well; one must venture into the arts and humanities to find fields in which linear algebra does not come into play. The notes contain two sections that are somewhat beyond what is nor- mally covered in MA1042. The first is section 2.5, which gives a cursory introduction to vector spaces and linear transformations. Optional reading for students in MA1042, this provides a glimpse of the subject matter of MA3042. The second is section 3.5, the topic of which is the cross product. This is of potential interest to students of multivariable (three, to be precise) calculus. The course opens with an introduction to systems of linear equations and their solution by substitution. The limitations of this method quickly be- come apparent, and we begin the development of alternatives by discussing the simplicity of the substitution method on certain highly structured sys- tems.
    [Show full text]
  • Gaussian Elimination Without Rounding
    Gaussian elimination without rounding From László Lovász’s lecture notes (by Péter Gács) February 15, 2018 The determinant Let A = ¹ai jº be an arbitrary n × n matrix consisting of integers. Let us understand, rst of all, that the polynomial computation of det¹Aº is not inherently impossible, i.e. the result can be written with polynomially many 2 digits. Let K = max jai j j, then to write A we need obviously at least n log K bits. On the other hand, the denition of determinants gives j det¹Aºj ≤ n!Kn; hence det¹Aº can be written using log¹n!Knº + O¹1º ≤ n¹log n + log Kº + O¹1º bits. Thus, det¹Aº can be written with polynomially many bits. Linear algebra gives a formula for each element of det¹A−1º as the quotient of two subdeter- minants of A. This shows that A−1 can also be written with polynomially many digits. Exercise 1 Show that if A is a square matrix consisting of integers then to write det¹Aº we need at most as many bits as to write A. [Hint: If a1;:::; an are the row vectors of A then j det¹Aºj ≤ ja1j · · · jan j (this so-called “Hadamard-inequality” is analogous to the statement that the area of a parallelogram is smaller than the product of the lengths of its sides).] Gaussian elimination. The usual procedure to compute the determinant is the so-called Gaussian elim- ination. We can view this as the transformation of the matrix into a lower trian- gular matrix with column operations.
    [Show full text]
  • Handout 15 Matrix Inverse Properties Gauss-Jordan Elimination Cofactor
    Handout 15 Matrix Inverse ¡1 If A is a square (n£n) matrix whose determinant is not zero, then there exists an inverse A satisfying: ¡1 ¡1 A A = I A A = I: Properties Uniqueness If the inverse exists, it is unique (a matrix can only have one inverse). ¡1 ¡1 Inverse of a product (A B)¡1 = B A . ¡1 Determinant of an inverse det (A ) = 1= det (A). ¡1 Inverse of an inverse (A )¡1 = A. Inverse of a small matrix For a 2 £ 2 matrix, if a b ¡1 1 d ¡b A = and det (A) 6= 0 then A = : µ c d ¶ det (A) µ ¡c a ¶ Gauss-Jordan elimination If we write an augmented matrix containing A j I we can use Gauss-Jordan elimination: ¡ ¢ 1. Carry out Gaussian elimination to get the matrix on the left to upper-triangular form. Check that there are no zeros on the digaonal (otherwise there is no inverse and we say A is singular) 2. Working from bottom to top and right to left, use row operations to create zeros above the diagonal as well, until the matrix on the left is diagonal. 3. Divide each row by a constant so that the matrix on the left becomes the identity matrix. ¡1 Once this is complete, so we have I j B , the matrix on the right is our inverse: B = A . ¡ ¢ Cofactor method There is a formal way to de¯ne the inverse. We ¯nd all the cofactors of our matrix (look back to determinants if you've forgotten) and put them in the matrix of cofactors.
    [Show full text]