Parity Detection of Propagating Microwave Fields

Total Page:16

File Type:pdf, Size:1020Kb

Parity Detection of Propagating Microwave Fields Parity Detection of Propagating Microwave Fields Jean-Claude Besse,1, ∗ Simone Gasparinetti,1, y Michele C. Collodo,1 Theo Walter,1 Ants Remm,1 Jonas Krause,1 Christopher Eichler,1 and Andreas Wallraff1 1Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland (Dated: December 23, 2019) The parity of the number of elementary excitations present in a quantum system provides impor- tant insights into its physical properties. Parity measurements are used, for example, to tomographi- cally reconstruct quantum states or to determine if a decay of an excitation has occurred, information which can be used for quantum error correction in computation or communication protocols. Here we demonstrate a versatile parity detector for propagating microwaves, which distinguishes between radiation fields containing an even or odd number n of photons, both in a single-shot measurement and without perturbing the parity of the detected field. We showcase applications of the detector for direct Wigner tomography of propagating microwaves and heralded generation of Schr¨odinger cat states. This parity detection scheme is applicable over a broad frequency range and may prove useful, for example, for heralded or fault-tolerant quantum communication protocols. I. INTRODUCTION qubits for measurement based entanglement generation [13], for elements of error correction [14{16], and entan- In quantum physics, the parity P of a wavefunction glement stabilization [17], an experiment which was also governs whether a system has an even or odd number of performed with ions [18, 19]. excitations n. The parity affects, for example, the sys- tem's statistical properties such as the likelihood of tran- sitions occurring between distinct quantum states [1,2]. II. PARITY DETECTION SCHEME An ideal measurement of the parity P of a system distin- guishes states with even (0; 2; 4; :::) from states with odd The parity detector for propagating microwave fields n (1; 3; 5; :::), while not providing any other information introduced here is based on a cavity QED system realized about the precise value of n. in superconducting circuits. We characterize the detec- In superconducting circuits, for example, the parity tor performance by measuring the parity of single and of the number of photons stored in a microwave cavity multi-photon states distributed sequentially over multi- is determined either by direct measurements [3], pro- ple time bins as generated by a true single microwave viding immediate access to the value of P , or indirect photon source. We illustrate the use of the detector to di- measurements [4], requiring the reconstruction of P from rectly evaluate the Wigner function of propagating fields another measured quantity. Direct measurements of the of single photons and their coherent superpositions with parity are frequently used to reconstruct quantum states vacuum by measuring their displaced parity. Finally, we of radiation fields stored in microwave cavities [3,5,6]. highlight the single-shot and QND nature of the parity However, parity measurements of propagating quantum detector by heralding propagating, microwave-frequency radiations fields, which can be used as the carriers of in- Schr¨odingercat states, with a definite even or odd parity, formation in quantum networks, have just recently been from incident coherent states with varying amplitude j j. realized in the optical domain [7] with neutral atom based α systems [8], while experimental realizations in the mi- To measure the parity P of a propagating microwave crowave domain are still lacking. Multi-photon quan- field, we engineer a controlled phase gate between a su- tum non-demolition (QND) measurements of itinerant perconducting transmon qubit embedded in a cavity, act- microwave fields are an essential element for error de- ing as an ancilla, and itinerant microwave photons [20{22] acting as the control field. We realize this gate by tuning arXiv:1912.09896v1 [quant-ph] 20 Dec 2019 tection [9] and error correction in information processing networks as they provide a path towards detecting pho- the first, jei, to second excited-state, jfi, transition of ton loss. the transmon qubit, !ef =(2π) = 5:9 GHz, into resonance Parity measurements also play an important role in with the fundamental mode of a cavity. The ground, protocols for error correction in quantum information jgi, to first excited state transition !ge is detuned by the processing [10, 11] and quantum communication appli- anharmonicity α=(2π) = (!ef − !ge) =(2π) = −220 MHz, cations [12]. In that context parity measurements have from the cavity mode. Thus, a vacuum Rabi mode split- been demonstrated, for example, with superconducting ting, of size 2g1=(2π) = 76 MHz, occurs if and only if the transmon is prepared in the excited state jei [21]. This ancilla-based scheme allows for the quantum-non- demolition measurement of the photon-number parity of ∗ [email protected] the propagating field reflected off the input of the detec- y Current address: Quantum Technology Laboratory, Chalmers tor, a feature which we demonstrate explicitly here. University of Technology, SE-412 96 Gteborg, Sweden We arm the parity detector for a time Tw = 1 µs, 2 shorter than both the lifetime T1 = 4:5 µs and dephasing (a) π/2 π/2 ? Detector time T2 = 3:5 µs of the detector transmon qubit, by n = 1 ... N defining a Ramsey sequence formed by two π=2 pulses Source separated by T , Fig.1(a). Each photon impinging on w Displacer the detector input during the time Tw imparts a phase p Tw = 1 μs shift of φ = π on the superposition state (jgi+eiφjei)= 2 Readout t of the transmon qubit created by the first 2 pulse [21]. π= (b) As iφ is 2 -periodic, the Ramsey sequence encodes the Detector Readout e π Source ~ ~ parity of the total number of scattered photons in the qubit population after the second π=2 pulse, leaving the ~ transmon in jei for even hP i = +1 or in jgi for odd Displacer hP i = −1. A schematic of the measurement setup is Heterodyne Q shown and discussed in Fig.1(b), the sample and the wiring are presented in AppendixA. ~ LO2 Parity P = ±1 LO I ~ III. PARITY MEASUREMENTS (c) 1 We examine the performance of this parity detector 0.1 using a well characterized spontaneous-emission, single- › P ‹ photon source [23], operated on a separate chip. This , source is capable of creating phase coherent superposi- tions of vacuum, j0i, and single photon, j1i, states in a Parity single time bin with a pulse bandwidth κp=(2π) = 2 MHz, which is small compared to the effective parity detector - 0.1 bandwidth, set by the linewidth κeff =(2π) = 30 MHz of the detector cavity. In this way the phase imparted on - 1 the detector qubit by each photon is well defined. Since 0 1 2 3 4 5 6 the photon pulse length, 1/κp, is short compared to Tw, Number of photons, N it is fully detected by the Ramsey sequence during which the detector is armed. Figure 1. Experimental setup and parity measure- We operate the single photon source to emit sequences ments. (a) Parity detection pulse sequence: Ramsey pulses of N = 0; 1; :::; 6 pulses each containing a single photon applied to detector qubit (red), pulse train of N spontaneously Fock state j1i [23, 24] travelling towards the detector and emitted photons (blue), externally applied coherent mode- matched displacer field (orange), and readout pulse (purple). record the average parity hP i of the pulse train as indi- (b) Radiation coming from a source is reflected off of a cavity cated by our detector. We take the finite phase coherence (green) coupled to a transmon (red) acting as the detector. ? time T2 of the qubit and its readout fidelity into account The source is either a single photon emitter or a pulsed mi- to linearly map the measured qubit excited population crowave generator with amplitude and phase control. Disper- Pe to a parity value hP i using reference traces consisting sive readout of the transmon, assisted by an additional cavity of Ramsey sequences with the same Tw, AppendixB. (purple), yields the photon parity (purple box). Fields inside We observe the measured parity hP i (blue bars) chang- the detector cavity can be displaced in-situ by applying an ad- ing sign, as expected, for each added single photon pulse ditional coherent tone (orange). Standard heterodyne detec- establishing the detector's capability to discriminate even tion of the (I;Q)-quadratures of the reflected light field (green (hP i = +1) from odd (hP i = −1) photon number parity, box) is performed with a local oscillator (LO). (c) Measured parity hP i (blue bars, on positive and negative log scales) for a see Fig.1(c) with the ideal result indicated by dark gray train of N single photon pulses. Ideal value of hP i (dark gray wireframes. The contrast in the measured hP i, plotted wireframes) and hP i considering finite transmission efficiency on a logarithmic scale, reduces in good agreement with η = 78 % between source and detector (red wireframes and N (1−2η) (dashed red line) due to the finite transmission dashed lines). Error bars indicate the statistical standard efficiency η = 78 % between the source and the detector, deviation of ±4% of the parity. AppendixB. We note that these losses are external to the parity detector and independent of the detection event. y y by an operator Dα = exp(α a − αa ) directly yields the value of the Wigner function IV. WIGNER TOMOGRAPHY π W (α) = h jDy PD j i = Tr(PD ρDy ) (1) 2 α α α α Measuring the expectation value of the parity operator P of a radiation field described by a wave function j i, at the point α in phase space [4, 25, 26].
Recommended publications
  • Computational Complexity: a Modern Approach
    i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University [email protected] Not to be reproduced or distributed without the authors’ permission This is an Internet draft. Some chapters are more finished than others. References and attributions are very preliminary and we apologize in advance for any omissions (but hope you will nevertheless point them out to us). Please send us bugs, typos, missing references or general comments to [email protected] — Thank You!! DRAFT ii DRAFT Chapter 9 Complexity of counting “It is an empirical fact that for many combinatorial problems the detection of the existence of a solution is easy, yet no computationally efficient method is known for counting their number.... for a variety of problems this phenomenon can be explained.” L. Valiant 1979 The class NP captures the difficulty of finding certificates. However, in many contexts, one is interested not just in a single certificate, but actually counting the number of certificates. This chapter studies #P, (pronounced “sharp p”), a complexity class that captures this notion. Counting problems arise in diverse fields, often in situations having to do with estimations of probability. Examples include statistical estimation, statistical physics, network design, and more. Counting problems are also studied in a field of mathematics called enumerative combinatorics, which tries to obtain closed-form mathematical expressions for counting problems. To give an example, in the 19th century Kirchoff showed how to count the number of spanning trees in a graph using a simple determinant computation. Results in this chapter will show that for many natural counting problems, such efficiently computable expressions are unlikely to exist.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • The Computational Complexity Column by V
    The Computational Complexity Column by V. Arvind Institute of Mathematical Sciences, CIT Campus, Taramani Chennai 600113, India [email protected] http://www.imsc.res.in/~arvind The mid-1960’s to the early 1980’s marked the early epoch in the field of com- putational complexity. Several ideas and research directions which shaped the field at that time originated in recursive function theory. Some of these made a lasting impact and still have interesting open questions. The notion of lowness for complexity classes is a prominent example. Uwe Schöning was the first to study lowness for complexity classes and proved some striking results. The present article by Johannes Köbler and Jacobo Torán, written on the occasion of Uwe Schöning’s soon-to-come 60th birthday, is a nice introductory survey on this intriguing topic. It explains how lowness gives a unifying perspective on many complexity results, especially about problems that are of intermediate complexity. The survey also points to the several questions that still remain open. Lowness results: the next generation Johannes Köbler Humboldt Universität zu Berlin [email protected] Jacobo Torán Universität Ulm [email protected] Abstract Our colleague and friend Uwe Schöning, who has helped to shape the area of Complexity Theory in many decisive ways is turning 60 this year. As a little birthday present we survey in this column some of the newer results related with the concept of lowness, an idea that Uwe translated from the area of Recursion Theory in the early eighties. Originally this concept was applied to the complexity classes in the polynomial time hierarchy.
    [Show full text]
  • Physics 212B, Ken Intriligator Lecture 6, Jan 29, 2018 • Parity P Acts As P
    Physics 212b, Ken Intriligator lecture 6, Jan 29, 2018 Parity P acts as P = P † = P −1 with P~vP = ~v and P~aP = ~a for vectors (e.g. ~x • − and ~p) and axial pseudo-vectors (e.g. L~ and B~ ) respectively. Note that it is not a rotation. Parity preserves all the basic commutation relations, but it is not necessarily a symmetry of the Hamiltonian. The names scalar and pseudo scalar are often used to denote parity even vs odd: P P = for “scalar” operators (like ~x2 or L~ 2, and P ′P = ′ for pseudo O O O −O scalar operators (like S~ ~x). · Nature respects parity aside from some tiny effects at the fundamental level. E.g. • in electricity and magnetism, we can preserve Maxwell’s equations via V~ ~ V and → − V~ +V~ . axial → axial In QM, parity is represented by a unitary operator such that P ~r = ~r and • | i | − i P 2 = 1. So the eigenvectors of P have eigenvalue 1. A state is even or odd under parity ± if P ψ = ψ ; in position space, ψ( ~x) = ψ(~x). In radial coordinates, parity takes | i ±| i − ± cos θ cos θ and φ φ + π, so P α,ℓ,m =( 1)ℓ α,ℓ,m . This is clear also from the → − → | i − | i ℓ = 1 case, any getting general ℓ from tensor products. If [H,P ] = 0, then the non-degenerate energy eigenstates can be written as P eigen- states. Parity in 1d: PxP = x and P pP = p. The Hamiltonian respects parity if V ( x) = − − − V (x).
    [Show full text]
  • Constructive Galois Connections
    ZU064-05-FPR main 23 July 2018 12:36 1 Constructive Galois Connections DAVID DARAIS University of Vermont, USA (e-mail: [email protected]) DAVID VAN HORN University of Maryland, College Park, USA (e-mail: [email protected]) Abstract Galois connections are a foundational tool for structuring abstraction in semantics and their use lies at the heart of the theory of abstract interpretation. Yet, mechanization of Galois connections using proof assistants remains limited to restricted modes of use, preventing their general application in mechanized metatheory and certified programming. This paper presents constructive Galois connections, a variant of Galois connections that is effective both on paper and in proof assistants; is complete with respect toa large subset of classical Galois connections; and enables more general reasoning principles, including the “calculational” style advocated by Cousot. To design constructive Galois connections we identify a restricted mode of use of classical ones which is both general and amenable to mechanization in dependently-typed functional programming languages. Crucial to our metatheory is the addition of monadic structure to Galois connections to control a “specification effect.” Effectful calculations may reason classically, while pure calculations have extractable computational content. Explicitly moving between the worlds of specification and implementation is enabled by our metatheory. To validate our approach, we provide two case studies in mechanizing existing proofs from the literature: the first uses calculational abstract interpretation to design a static analyzer; the second forms a semantic basis for gradual typing. Both mechanized proofs closely follow their original paper-and-pencil counterparts, employ reasoning principles arXiv:1807.08711v1 [cs.PL] 23 Jul 2018 not captured by previous mechanization approaches, support the extraction of verified algorithms, and are novel.
    [Show full text]
  • Lecture 24 1 the Complexity of Counting
    Notes on Complexity Theory Last updated: November, 2011 Lecture 24 Jonathan Katz 1 The Complexity of Counting We explore three results related to hardness of counting. Interestingly, at their core each of these results relies on a simple | yet powerful | technique due to Valiant and Vazirani. 1.1 Hardness of Unique-SAT Does SAT become any easier if we are guaranteed that the formula we are given has at most one solution? Alternately, if we are guaranteed that a given boolean formula has a unique solution does it become any easier to ¯nd it? We show here that this is not likely to be the case. De¯ne the following promise problem: USAT def= fÁ : Á has exactly one satisfying assignmentg USAT def= fÁ : Á is unsatis¯ableg: Clearly, this problem is in promise-NP. We show that if it is in promise-P, then NP = RP. We begin with a lemma about pairwise-independent hashing. n m m+1 Lemma 1 Let S ⊆ f0; 1g be an arbitrary set with 2 · jSj · 2 , and let Hn;m+2 be a family of pairwise-independent hash functions mapping f0; 1gn to f0; 1gm+2. Then Pr [there is a unique x 2 S with h(x) = 0m+2] ¸ 1=8: h2Hn;m+2 Proof Let 0 def= 0m+2, and let p def= 2¡(m+2). Let N be the random variable (over choice of random h 2 Hn;m+2) denoting the number of x 2 S for which h(x) = 0. Using the inclusion/exclusion principle, we have X 1 X Pr[N ¸ 1] ¸ Pr[h(x) = 0] ¡ ¢ Pr[h(x) = h(x0) = 0] 2 x2S x6=x02S µ ¶ jSj = jSj ¢ p ¡ p2; 2 ¡ ¢ P 0 jSj 2 while Pr[N ¸ 2] · x6=x02S Pr[h(x) = h(x ) = 0] = 2 p .
    [Show full text]
  • Efficient Estimation of Pauli Observables by Derandomization
    PHYSICAL REVIEW LETTERS 127, 030503 (2021) Efficient Estimation of Pauli Observables by Derandomization Hsin-Yuan Huang ,1,2,* Richard Kueng,3 and John Preskill1,2,4,5 1Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125, USA 2Department of Computing and Mathematical Sciences, Caltech, Pasadena, California 91125, USA 3Institute for Integrated Circuits, Johannes Kepler University Linz, A-4040, Austria 4Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, California 91125, USA 5AWS Center for Quantum Computing, Pasadena, California 91125, USA (Received 19 March 2021; accepted 14 June 2021; published 16 July 2021) We consider the problem of jointly estimating expectation values of many Pauli observables, a crucial subroutine in variational quantum algorithms. Starting with randomized measurements, we propose an efficient derandomization procedure that iteratively replaces random single-qubit measurements by fixed Pauli measurements; the resulting deterministic measurement procedure is guaranteed to perform at least as well as the randomized one. In particular, for estimating any L low-weight Pauli observables, a deterministic measurement on only of order logðLÞ copies of a quantum state suffices. In some cases, for example, when some of the Pauli observables have high weight, the derandomized procedure is substantially better than the randomized one. Specifically, numerical experiments highlight the advantages of our derandomized protocol over various previous methods for estimating the ground-state
    [Show full text]
  • A Delayed Promotion Policy for Parity Games$
    A Delayed Promotion Policy for Parity GamesI Massimo Benerecettia, Daniele Dell’Erbaa, Fabio Mogaverob aUniversita` degli Studi di Napoli Federico II, Napoli, Italy bUniversity of Oxford, Oxford, UK Abstract Parity games are two-player infinite-duration games on graphs that play a crucial role in various fields of theoretical computer science. Finding efficient algorithms to solve these games in practice is widely acknowledged as a core problem in formal verification, as it leads to efficient solutions of the model-checking and satisfiability problems of expressive temporal logics, e.g., the modal µCALCULUS. Their solution can be reduced to the problem of identifying sets of positions of the game, called dominions, in each of which a player can force a win by remaining in the set forever. Recently, a novel technique to compute dominions, called priority promotion, has been proposed, which is based on the notions of quasi dominion, a relaxed form of dominion, and dominion space. The underlying framework is general enough to accommodate different instantiations of the solution procedure, whose correctness is ensured by the nature of the space itself. In this paper we propose a new such instantiation, called delayed promotion, that tries to reduce the possible exponential behaviors exhibited by the original method in the worst case. The resulting procedure often outperforms both the state-of-the-art solvers and the original priority promotion approach. Keywords: Parity games; Infinite-duration games on graphs; Formal methods. 1. Introduction The abstract concept of game has proved to be a fruitful metaphor in theoretical computer science [2]. Several decision problems can, indeed, be encoded as path- forming games on graphs, where a player willing to achieve a certain goal, usually the verification of some property on the plays derived from the original problem, has to face an opponent whose aim is to pursue the exact opposite task.
    [Show full text]
  • The Complexity of Partial-Observation Parity Games
    The Complexity of Partial-Observation Parity Games Krishnendu Chatterjee1 and Laurent Doyen2 1 IST Austria (Institute of Science and Technology Austria) 2 LSV, ENS Cachan & CNRS, France Abstract. We consider two-player zero-sum games on graphs. On the basis of the information available to the players these games can be classified as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided partial-observation (one player has partial-observation and the other player has complete-observation); and (c) complete-observation (both players have com- plete view of the game). We survey the complexity results for the problem of de- ciding the winner in various classes of partial-observation games with ω-regular winning conditions specified as parity objectives. We present a reduction from the class of parity objectives that depend on sequence of states of the game to the sub-class of parity objectives that only depend on the sequence of observations. We also establish that partial-observation acyclic games are PSPACE-complete. 1 Introduction Games on graphs. Games played on graphs provide the mathematical framework to analyze several important problems in computer science as well as mathematics. In par- ticular, when the vertices and edges of a graph represent the states and transitions of a reactive system, then the synthesis problem (Church’s problem) asks for the construc- tion of a winning strategy in a game played on a graph [5,21,20, 18]. Game-theoretic formulations have also proved useful for the verification [1], refinement [13], and com- patibility checking [9] of reactive systems.
    [Show full text]
  • Lecture 1 1 Turing Machines
    Notes on Complexity Theory Last updated: August, 2011 Lecture 1 Jonathan Katz 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look at Sipser's book [3].) A Turing machine is de¯ned by an integer k ¸ 1, a ¯nite set of states Q, an alphabet ¡, and a transition function ± : Q £ ¡k ! Q £ ¡k¡1 £ fL; S; Rgk where: ² k is the number of (in¯nite, one-dimensional) tapes used by the machine. In the general case we have k ¸ 3 and the ¯rst tape is a read-only input tape, the last is a write-once output tape, and the remaining k ¡2 tapes are work tapes. For Turing machines with boolean output (which is what we will mostly be concerned with in this course), an output tape is unnecessary since the output can be encoded into the ¯nal state of the Turing machine when it halts. ² Q is assumed to contain a designated start state qs and a designated halt state qh. (In the case where there is no output tape, there are two halting states qh;0 and qh;1.) ² We assume that ¡ contains f0; 1g, a \blank symbol", and a \start symbol". ² There are several possible conventions for what happens when a head on some tape tries to move left when it is already in the left-most position, and we are agnostic on this point. (Anyway, by our convention, below, that the left-most cell of each tape is \marked" there is really no reason for this to ever occur.
    [Show full text]
  • Arxiv:2103.07510V1 [Quant-Ph] 12 Mar 2021
    Efficient estimation of Pauli observables by derandomization Hsin-Yuan Huang,1, 2, ∗ Richard Kueng,3 and John Preskill1, 2, 4, 5 1Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA 2Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA, USA 3Institute for Integrated Circuits, Johannes Kepler University Linz, Austria 4Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, CA, USA 5AWS Center for Quantum Computing, Pasadena, CA, USA (Dated: March 16, 2021) We consider the problem of jointly estimating expectation values of many Pauli observables, a crucial subroutine in variational quantum algorithms. Starting with randomized measurements, we propose an efficient derandomization procedure that iteratively replaces random single-qubit measurements with fixed Pauli measurements; the resulting deterministic measurement procedure is guaranteed to perform at least as well as the randomized one. In particular, for estimating any L low-weight Pauli observables, a deterministic measurement on only of order log(L) copies of a quantum state suffices. In some cases, for example when some of the Pauli observables have a high weight, the derandomized procedure is substantially better than the randomized one. Specifically, numerical experiments highlight the advantages of our derandomized protocol over various previous methods for estimating the ground-state energies of small molecules. I. INTRODUCTION efficiently: For each of M copies of ρ, and for each of the n qubits, we chose uniformly at random to mea- Noisy Intermediate-Scale Quantum (NISQ) devices sure X, Y , or Z. Then we can achieve the desired prediction accuracy with high success probability if are becoming available [39]. Though less powerful w 2 than fully error-corrected quantum computers, NISQ M = O(3 log L/ ), assuming that all L operators devices used as coprocessors might have advantages on our list have weight no larger than w [15, 21].
    [Show full text]
  • Energy Parity Games✩
    Theoretical Computer Science 458 (2012) 49–60 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Energy parity gamesI Krishnendu Chatterjee a, Laurent Doyen b,∗ a IST Austria (Institute of Science and Technology Austria), Austria b LSV, ENS Cachan & CNRS, France article info a b s t r a c t Article history: Energy parity games are infinite two-player turn-based games played on weighted graphs. Received 19 April 2011 The objective of the game combines a (qualitative) parity condition with the (quantitative) Received in revised form 14 May 2012 requirement that the sum of the weights (i.e., the level of energy in the game) must remain Accepted 30 July 2012 positive. Beside their own interest in the design and synthesis of resource-constrained Communicated by M. Mavronicolas omega-regular specifications, energy parity games provide one of the simplest model of games with combined qualitative and quantitative objectives. Our main results are as Keywords: follows: (a) exponential memory is sufficient and may be necessary for winning strategies Games on graphs Parity objectives in energy parity games; (b) the problem of deciding the winner in energy parity games Quantitative objectives can be solved in NP \ coNP; and (c) we give an algorithm to solve energy parity by reduction to energy games. We also show that the problem of deciding the winner in energy parity games is logspace-equivalent to the problem of deciding the winner in mean-payoff parity games, which can thus be solved in NP \ coNP. As a consequence we also obtain a conceptually simple algorithm to solve mean-payoff parity games.
    [Show full text]