Cosmology II: the Thermal History of the Universe
Total Page:16
File Type:pdf, Size:1020Kb
Cosmology II: The thermal history of the Universe . Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 . Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 1 / 21 Contents 1. The thermal history of the Universe 2. The cosmic microwave background 3. Dark matter 4. Dark energy models 5. Conclusions . Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 2 / 21 Nucleosyhthesis (the formation of Helium, Deuterium, ...) Inflation ? Thermal history In the past the Universe was not only much denser than today but also much hotter. The most remarkable events of the hot Universe: Recombination (electrons and protons combine to neutral hydrogen). Age of the Universe: t0 ' 13:7 billion years . Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 3 / 21 Inflation ? Thermal history In the past the Universe was not only much denser than today but also much hotter. The most remarkable events of the hot Universe: Recombination (electrons and protons combine to neutral hydrogen). Nucleosyhthesis (the formation of Helium, Deuterium, ...) Age of the Universe: t0 ' 13:7 billion years . Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 3 / 21 Thermal history In the past the Universe was not only much denser than today but also much hotter. The most remarkable events of the hot Universe: Recombination (electrons and protons combine to neutral hydrogen). Nucleosyhthesis (the formation of Helium, Deuterium, ...) Inflation ? Age of the Universe: t0 ' 13:7 billion years . Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 3 / 21 At T ' 3000K (t ' 3000000years) the Universe is ’cold’ enough that protons and electrons can combine to neutral hydrogen. After this, photons no longer scatter with matter but propagate freely. Their energy (and hence the temperature) is redshifted to T0 = 2:728K today, corresponding to a density of about 400 photons per cm3. This cosmic microwave background can be observed today in the (1– 400)GHz range. It has a perfect blackbody spectrum. It represents a ’photo’ of the Universe when it was about 300’000 years old, corresponding to a redshift of z ' 1100. Recombination Since the photon (radiation) energy density scales like T 4 / R−4 / (z + 1)4 while the matter density scales like mn / R−3 / (z + 1)3, at very early time, the Universe is radiation dominated (z ∼> 4000, t ∼< 104 years). Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 4 / 21 After this, photons no longer scatter with matter but propagate freely. Their energy (and hence the temperature) is redshifted to T0 = 2:728K today, corresponding to a density of about 400 photons per cm3. This cosmic microwave background can be observed today in the (1– 400)GHz range. It has a perfect blackbody spectrum. It represents a ’photo’ of the Universe when it was about 300’000 years old, corresponding to a redshift of z ' 1100. Recombination Since the photon (radiation) energy density scales like T 4 / R−4 / (z + 1)4 while the matter density scales like mn / R−3 / (z + 1)3, at very early time, the Universe is radiation dominated (z ∼> 4000, t ∼< 104 years). At T ' 3000K (t ' 3000000years) the Universe is ’cold’ enough that protons and electrons can combine to neutral hydrogen. Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 4 / 21 This cosmic microwave background can be observed today in the (1– 400)GHz range. It has a perfect blackbody spectrum. It represents a ’photo’ of the Universe when it was about 300’000 years old, corresponding to a redshift of z ' 1100. Recombination Since the photon (radiation) energy density scales like T 4 / R−4 / (z + 1)4 while the matter density scales like mn / R−3 / (z + 1)3, at very early time, the Universe is radiation dominated (z ∼> 4000, t ∼< 104 years). At T ' 3000K (t ' 3000000years) the Universe is ’cold’ enough that protons and electrons can combine to neutral hydrogen. After this, photons no longer scatter with matter but propagate freely. Their energy (and hence the temperature) is redshifted to T0 = 2:728K today, corresponding to a density of about 400 photons per cm3. Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 4 / 21 It represents a ’photo’ of the Universe when it was about 300’000 years old, corresponding to a redshift of z ' 1100. Recombination Since the photon (radiation) energy density scales like T 4 / R−4 / (z + 1)4 while the matter density scales like mn / R−3 / (z + 1)3, at very early time, the Universe is radiation dominated (z ∼> 4000, t ∼< 104 years). At T ' 3000K (t ' 3000000years) the Universe is ’cold’ enough that protons and electrons can combine to neutral hydrogen. After this, photons no longer scatter with matter but propagate freely. Their energy (and hence the temperature) is redshifted to T0 = 2:728K today, corresponding to a density of about 400 photons per cm3. This cosmic microwave background can be observed today in the (1– 400)GHz range. It has a perfect blackbody spectrum. Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 4 / 21 Recombination Since the photon (radiation) energy density scales like T 4 / R−4 / (z + 1)4 while the matter density scales like mn / R−3 / (z + 1)3, at very early time, the Universe is radiation dominated (z ∼> 4000, t ∼< 104 years). At T ' 3000K (t ' 3000000years) the Universe is ’cold’ enough that protons and electrons can combine to neutral hydrogen. After this, photons no longer scatter with matter but propagate freely. Their energy (and hence the temperature) is redshifted to T0 = 2:728K today, corresponding to a density of about 400 photons per cm3. This cosmic microwave background can be observed today in the (1– 400)GHz range. It has a perfect blackbody spectrum. It represents a ’photo’ of the Universe when it was about 300’000 years old, corresponding to a redshift of z ' 1100. Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 4 / 21 The cosmic microwave background: the spectrum (Fixen et al. 1996) Nobel Prize 1978 for Penzias and Wilson, Nobel Prize 2006 for Mather o T0 = 2:728K ' −270:5 C . Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 5 / 21 The cosmic microwave background: anisotropies Map of the CMB temperature: per- fectly isotropic. Subtracting the monopole a dipole of amplitude ∼ 10−3 becomes vis- ible. It is mainly due to the motion of the solar system with respect of the sphere of emission (last scatter- ing surface). And what is this? Left over after subtracting the dipole. Fluctuations of amplitude ∼ 10−5. Smoot et al. (1999), Nobel Prize 2006 . Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 6 / 21 The cosmic microwave background: anisotropies ESA/Planck (2013) . Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 7 / 21 The cosmic microwave background: anisotropies Planck collaboration: CMB power spectra & likelihood Angular scale 90◦ 18◦ 1◦ 0.2◦ 0.1◦ 0.07◦ 6000 5000 ] 4000 2 K µ [ 3000 D 2000 1000 0 2 10 50 500 1000 1500 2000 2500 Multipole moment, Figure 37. The 2013 Planck CMB temperatureESA/Planck angular power spectrum. (2013) The error bars include cosmic variance, whose magnitude ` is indicated by the green shaded area around the best fit model.o The low- values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5,o 16, ` =19,200 22.5, 27, corresponds 34.5, and 44.5. to about 1 . ) ’acoustic’ peaks. (θ ' 180 =`) (This isTable roughly 8. Constraints the on the double basic six-parameter of the⇤CDM angular model using sizePlanck ofdata. the The top full section moon contains constraints (or of on the the six sun).) primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters. Planck Planck+WP . Parameter Best fit 68% limits Best fit 68% limits Ruth Durrer (Université de Genève) Cosmology II August 6, 2014 8 / 21 ⌦ h2 ......... 0.022068 0.02207 0.00033 0.022032 0.02205 0.00028 b ± ± ⌦ h2 ......... 0.12029 0.1196 0.0031 0.12038 0.1199 0.0027 c ± ± 100✓ ....... 1.04122 1.04132 0.00068 1.04119 1.04131 0.00063 MC ± ± +0.012 ⌧ ............ 0.0925 0.097 0.038 0.0925 0.089 0.014 ± − n ........... 0.9624 0.9616 0.0094 0.9619 0.9603 0.0073 s ± ± 10 +0.024 ln(10 As)..... 3.098 3.103 0.072 3.0980 3.089 0.027 ± − +0.018 ⌦⇤ .......... 0.6825 0.686 0.020 0.6817 0.685 0.016 ± − +0.016 ⌦m .......... 0.3175 0.314 0.020 0.3183 0.315 0.018 ± − σ ........... 0.8344 0.834 0.027 0.8347 0.829 0.012 8 ± ± +4.0 zre . 11.35 11.4 2.8 11.37 11.1 1.1 − ± H . 67.11 67.4 1.4 67.04 67.3 1.2 0 ± ± 9 +0.051 10 As ........ 2.215 2.23 0.16 2.215 2.196 0.060 ± − ⌦ h2 ......... 0.14300 0.1423 0.0029 0.14305 0.1426 0.0025 m ± ± Age/Gyr . 13.819 13.813 0.058 13.8242 13.817 0.048 ± ± z . 1090.43 1090.37 0.65 1090.48 1090.43 0.54 ⇤ ± ± 100✓ ........ 1.04139 1.04148 0.00066 1.04136 1.04147 0.00062 ⇤ ± ± z . 3402 3386 69 3403 3391 60 eq ± ± 33 These initial fluctuations are also imprinted in the CMB. Once a given scale enters the horizon, fluctuations on this scale begin to oscillate like acoustic waves (sound).